
Prof. Bodik CS 164 Lecture 22 1

Exceptions.
Language Design and Implementation Issues

Lecture 22

Prof. Bodik CS 164 Lecture 22 2

Structure of a Compiler

• We looked at each stage in
turn

• A new language feature
affects many stages

• We will add exceptions

Source

Lexer

Parser

Code Generator

Runtime System

Executable

Type checker

Prof. Bodik CS 164 Lecture 22 3

Lecture Summary

• Why exceptions ?

• Syntax and informal semantics

• Semantic analysis (i.e. type checking rules)

• Code generation

• Runtime system support

Prof. Bodik CS 164 Lecture 22 4

Exceptions. Motivation.

• “Classroom” programs are written with
optimistic assumptions

• Real-world programs must consider
“exceptional” situations:
– Resource exhaustion (disk full, out of memory, …)
– Invalid input
– Errors in the program (null pointer dereference)

• It is usual for solid code to contain 30-50%
error handling code !

Prof. Bodik CS 164 Lecture 22 5

Exceptions. Motivation

Two ways of dealing with errors:
1. Handle them where you detect them

• E.g., null pointer dereference → stop execution

2. Let the caller handle the errors:
• The caller has more contextual information

E.g. an error when opening a file:
a) In the context of opening /etc/passwd
b) In the context of opening a log file

• But then we must tell the caller about the error !
Prof. Bodik CS 164 Lecture 22 6

Exceptions. Error Return Codes.

• The callee can signal the error by returning a
special return value:
– Must not be one of the valid return values
– Must be agreed upon beforehand

• The caller promises to check the error return
and either:
– Correct the error, or
– Pass it on to its own caller

Prof. Bodik CS 164 Lecture 22 7

Error Return Codes

• It is sometimes hard to select return codes
– What is a good error code for “double divide(…)”?

• How many of you always check errors for:
– malloc(int) ?
– open(char *) ?
– close(int) ?
– time(struct time_t *) ?

• Easy to forget to check error return codes

Prof. Bodik CS 164 Lecture 22 8

Example: Automated Grade Assignment

float getGrade(int sid) { return dbget(gradesdb, sid); }

void setGrade(int sid, float grade) { dbset(gradesdb, sid, grade); }

void extraCredit(int sid) {
setGrade(sid, 0.33 + getGrade(sid));
}

void grade_inflator() {
while(gpa() < 3.0) { extraCredit(random()); }
}

• What errors are we ignoring here ?

Prof. Bodik CS 164 Lecture 22 9

Example: Automated Grade Assignment

float getGrade(int sid) {
float res; int err = dbget(gradesdb, sid, &res);
if(err < 0) { return -1.0;}
return res;

}

int extraCredit(int sid) {
int err; float g = getGrade(sid);
if(g < 0.0) { return 1; }
err = setGrade(sid, 0.33 + g));
return (err < 0);

}

Some functions
change their type

Error codes are
sometimes arbitrary

A lot of extra
code

Prof. Bodik CS 164 Lecture 22 10

Exceptions

• Exceptions are a language mechanism designed
to allow:
– Deferral of error handling to a caller

– Without (explicit) error codes

– And without (explicit) error return code checking

Prof. Bodik CS 164 Lecture 22 11

Adding Exceptions to Cool

• We extend the language of expressions:
e ::= throw e | try e catch x : T ⇒ e’

• (Informal) semantics of throw e
– Signals an exception
– Interrupts the current evaluation and searches for

an exception handler up the activation chain
– The value of e is an exception parameter and can be

used to communicate details about the exception

Prof. Bodik CS 164 Lecture 22 12

Adding Exceptions to Cool

(Informal) semantics of try e catch x : T ⇒ e1
1. e is evaluated first
2. If e’s evaluation terminates normally with v

then v is the result of the entire expression
Else (e’s evaluation terminates exceptionally)

If the exception parameter is of type · T then
– Evaluate e1 with x bound to the exception parameter
– The (normal or exceptional) result of evaluating e1

becomes the result of the entire expression
Else

– The entire expression terminates exceptionally

Prof. Bodik CS 164 Lecture 22 13

Example: Automated Grade Assignment

float getGrade(int sid) { return dbget(gradesdb, sid); }

void setGrade(int sid, float grade) {
if(grade < 0.0 || grade > 4.0) { throw (new NaG); }

dbset(gradesdb, sid, grade); }

void extraCredit(int sid) {
setGrade(sid, 0.33 + getGrade(sid)) }

void grade_inflator() {
while(gpa < 3.0) {

try extraCredit(random())
catch x : Object ⇒ print “Nice try! Don’t give up.\n”; }

}
Prof. Bodik CS 164 Lecture 22 14

Example. Notes.

• Only error handling code remains
• But no error propagation code

– The compiler handles the error propagation
– No way to forget about it
– And also much more efficient (we’ll see)

• Two kinds of evaluation outcomes:
– Normal return (with a return value)
– Exceptional “return” (with an exception parameter)
– No way to get confused which is which

Prof. Bodik CS 164 Lecture 22 15

Overview

Why exceptions ?

Syntax and informal semantics

• Semantic analysis (i.e. type checking rules)

• Code generation

• Runtime system support

Prof. Bodik CS 164 Lecture 22 16

Typing Exceptions

• We must extend the Cool typing judgment
O, M, C ` e : T

– Type T refers to the normal return !

• We’ll start with the rule for try:
– Parameter “x” is bound in the catch expression
– try is like a conditional

O, M , C ` try e catch x : T ⇒ e’ : T1 t T2

O, M, C ` e : T1 O[T/x], M, C ` e’ : T2

Prof. Bodik CS 164 Lecture 22 17

Typing Exceptions

• What is the type of “throw e” ?
• The type of an expression:

– Is a description of the possible return values, and
– Is used to decide in what contexts we can use the

expression
• “throw” does not return to its immediate

context but directly to the exception handler !
• The same “throw e” is valid in any context:

if throw e then (throw e) + 1 else (throw e).foo()
• As if “throw e” has any type !

Prof. Bodik CS 164 Lecture 22 18

Typing Exceptions

• As long as “e” is well typed, “throw e” is well
typed with any type needed in the context

• This is convenient because we want to be able
to signal errors from any context

O, M , C ` throw e : T2

O, M, C ` e : T1

Prof. Bodik CS 164 Lecture 22 19

Overview

Why exceptions ?

Syntax and informal semantics

Semantic analysis (i.e. type checking rules)

• Code generation

• Runtime system support

Prof. Bodik CS 164 Lecture 22 20

Operational Semantics of Exceptions

• Several ways to model the behavior of
exceptions

• A generalized value is
– Either a normal termination value, or
– An exception with a parameter value

g ::= Norm(v) | Exc(v)
• Thus given a generalized value we can:

– Tell if it is normal or exceptional return, and
– Extract the return value or the exception

parameter

Prof. Bodik CS 164 Lecture 22 21

Operational Semantics of Exceptions (1)

• The existing rules are modified to use
Norm(v) :

so, E, S ` e1 + e2 : Norm(Int(n1 + n2)), S2

so, E, S ` e1 : Norm(Int(n1)), S1
so, E, S1 ` e2 : Norm(Int(n2)), S2

so, E, S ` id : Norm(v), S

E(id) = lid
S(lid) = v

so, E, S ` self : Norm(so), S

Prof. Bodik CS 164 Lecture 22 22

Operational Semantics of Exceptions (2)

• “throw” returns exceptionally:

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : v, S1

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Norm(v), S1

• The rule above is not well formed! Why?

Prof. Bodik CS 164 Lecture 22 23

Operational Semantics of Exceptions (3)

• “throw e” returns exceptionally:

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Norm(v), S1

so, E, S ` throw e : Exc(v), S1

so, E , S ` e : Exc(v), S1

• What if the evaluation of e itself throws an
exception?
• E.g. “throw (1 + (throw 2))” is like “throw 2”
• Formally:

Prof. Bodik CS 164 Lecture 22 24

Operational Semantics of Exceptions (4)

• All existing rules are changed to propagate
the exception:

so, E, S ` e1 + e2 : Exc(v), S1

so, E, S ` e1 : Exc(v), S1

so, E, S ` e1 + e2 : Exc(v), S2

so, E, S ` e1 : Norm(Int(n1)), S1
so, E, S1 ` e2 : Exc(v), S2

• Note: the evaluation of e2 is aborted

Prof. Bodik CS 164 Lecture 22 25

Operational Semantics of Exceptions (5)

• The rules for “try” expressions:
– Multiple rules (just like for a conditional)

so, E, S ` try e catch x : T ⇒ e’ : Norm(v), S1

so, E, S ` e : Norm(v), S1

• What if e terminates exceptionally?
• We must check whether it terminates with an

exception parameter of type T or not

Prof. Bodik CS 164 Lecture 22 26

Operational Semantics for Exceptions (6)

• If e does not throw the expected exception

• If e does throw the expected exception

so, E, S ` try e catch x : T ⇒ e’ : g, S2

so, E, S ` e : Exc(v), S1

v = X(…)
X · T
lnew = newloc(S1)
so, E[lnew/x] , S1[v/lnew] ` e’ : g, S2

so, E, S ` try e catch x : T ⇒ e’ : Exc(v), S1

so, E, S ` e : Exc(v), S1

v = X(…)
not (X · T)

Prof. Bodik CS 164 Lecture 22 27

Operational Semantics of Exceptions. Notes

• Our semantics is precise
• But is not very clean

– It has two or more versions of each original rule
• It is not a good recipe for implementation

– It models exceptions as “compiler-inserted
propagation of error return codes”

– There are much better ways of implementing
exceptions

• There are other semantics that are cleaner
and model better implementations

Prof. Bodik CS 164 Lecture 22 28

Overview

Why exceptions ?

Syntax and informal semantics

Semantic analysis (i.e. type checking rules)

• Code generation

• Runtime system support

Prof. Bodik CS 164 Lecture 22 29

Code Generation for Exceptions

• Propagate a pair of return values:
– normal+exception

• Simple to implement
• But not very good

– We pay a cost at each call/return (i.e. often)
– Even though exceptions are rare (i.e. exceptional)

• A good engineering principle:
– Don’t pay often for something that you use rarely!
– Optimize the common case !

Prof. Bodik CS 164 Lecture 22 30

Implementing Exceptions with Long Jumps (1)

Idea:
• “try” saves on the stack the handler context:

– The current SP, FP and the label of the catch code

• “throw” jumps to the last saved handler label
– Called a long jump

• We reserve the MIPS register $gp to hold
the most recently saved handler context

• Implement exceptions without parameters

Prof. Bodik CS 164 Lecture 22 31

Long Jumps. Example.

$sp

fpgp
handler $gp
handler $fp
handler PC

After throw

$gp

$fp

$sp

current
frame.

…

…

handler $gp
handler $fp
handler PC

Before throw

$sp
$fp

Before try

$gp current
frame

$gp

$fp

$sp

handler $gp
handler $fp
handler PC

After try
Prof. Bodik CS 164 Lecture 22 32

Implementing Exceptions with Long Jumps (2)

cgen(try e catch e’) =
sw $gp 0($sp) ; Save old handler context
sw $fp -4($sp) ; Save FP
sw Lcatch -8($sp) ; Save handler address
addiu $sp $sp -12 ; Finish the pushes
mov $gp $sp ; Set the new handler context
cgen(e) ; Try part. Result in $a0
addiu $sp $sp 12 ; Pop the context
lw $gp 0($sp) ; Restore old handler context
b end_try

Lcatch:
cgen(e’) ; Catch part. Result in $a0

end_try:

Prof. Bodik CS 164 Lecture 22 33

Implementing Exceptions with Long Jumps (3)

cgen(throw) =
mov $sp $gp ; Restore the stack pointer
addiu $sp $sp 12
lw $t0 -8($sp) ; Load the catch PC address
lw $fp -4($sp) ; Load the new FP
lw $gp 0($sp) ; Restore the old handler context
jr $t0 ; Jump to the exception handler

Prof. Bodik CS 164 Lecture 22 34

Long Jumps

• A long jump is a non-local goto:
– In one shot you can jump back to a function in the

caller chain (bypassing many intermediate frames)
– A long jump can “return” from many frames at once

• Long jumps are a commonly used
implementation scheme for exceptions

• Disadvantage:
– Minor performance penalty at each try

Prof. Bodik CS 164 Lecture 22 35

Implementing Exceptions with Tables (1)

cgen(try e catch e’) =
cgen(e) ; Code for the try block
goto end_try

L_catch:
cgen(e’) ; Code for the catch block

end_try:
…

cgen(throw) =
jr runtime_throw

• We do not want to pay for exceptions when
executing a “try”
– Only when executing a “throw”

Prof. Bodik CS 164 Lecture 22 36

Implementing Exceptions with Tables (2)

• The normal execution proceeds at full speed

• When a throw is executed we use a runtime
function that finds the right catch block

• For this to be possible the compiler produces
a table saying for each catch block to which
instructions it corresponds

Prof. Bodik CS 164 Lecture 22 37

Implementing Exceptions with Tables.
Example.

• Consider the expression
e1 + (try e2 + (try e3 catch e3’) catch e2’)

callerL1’L1

C2endC3

callerC3C2

C3L3’L3

C2L2’L2

HandlerToFrom

Exception Table:
C2: cgen(e2’)

goto L4’
C3: cgen(e3’)

goto L3’

Handlers:
L1: cgen(e1)
L1’: t1 = acc
L2: cgen(e2)
L2’: t2 = acc
L3: cgen(e3)
L3’: acc ← acc + t2
L4’: acc ← acc + t1

Regular code:

Prof. Bodik CS 164 Lecture 22 38

Implementing Exceptions with Tables. Notes

• runtime_throw looks at the table and figures
which catch handler to invoke

• Advantage:
– No cost, except if an exception is thrown

• Disadvantage:
– Tables take space (even 30% of binary size)
– But at least they can be placed out of the way

• Java Virtual Machine uses this scheme

Prof. Bodik CS 164 Lecture 22 39

try … finally …

• Another exception-related construct:
try e1 finally e2

– After the evaluation of e1 terminates (either
normally or exceptionally) it evaluates e2

– The whole expression then terminates like e1

• Used for cleanup code:
try

f = fopen(“treasure.directions”, “w”);
… compute … fprintf(f, “Go %d paces to the left”, paces); …

finally
fclose(f)

Prof. Bodik CS 164 Lecture 22 40

Code Generation for try … finally

• Consider the expression: e1 + try e2 finally e2’

L1: cgen(e1)
L1’: t1 = acc
L2: cgen(e2)
L2’: t2 = acc

cgen(e2’) ; Run finally
acc ← t1 + t2

C2: cgen(e2’)
jr runtime_throw callerL1’L1

callerendC2

C2L2’L2

HandlerToFrom

Exception Table: Handlers: Regular code:

Code for finally clauses
must be duplicated !

Prof. Bodik CS 164 Lecture 22 41

Avoiding Code Duplication for try … finally

• The Java Virtual Machine designers wanted to
avoid this code duplication

• So they invented a new notion of subroutine
– Executes within the stack frame of a method
– Has access to and can modify local variables
– One of the few true innovations in the JVM

Prof. Bodik CS 164 Lecture 22 42

JVML Subroutines Are Complicated

• Subroutines are the most difficult part of the
JVML

• And account for the several bugs and
inconsistencies in the bytecode verifier

• Complicate the formal proof of correctness:
– 14 or 26 proof invariants due to subroutines
– 50 of 120 lemmas due to subroutines
– 70 of 150 pages of proof due to subroutines

Prof. Bodik CS 164 Lecture 22 43

Are JVML Subroutines Worth the Trouble ?

• Subroutines save space?
– About 200 subroutines in 650,000 lines of Java

(mostly in JDK)
– No subroutines calling other subroutines
– Subroutines save 2427 bytes of 8.7 Mbytes

(0.02%) !

• Changing the name of the language from Java
to Oak saves 13 times more space !

Prof. Bodik CS 164 Lecture 22 44

Exceptions. Conclusion

• Exceptions are a very useful construct

• A good programming language solution to an
important software engineering problem

• But exceptions are complicated:
– Hard to implement
– Complicate the optimizer
– Very hard to debug the implementation (exceptions

are exceptionally rare in code)

