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Global Optimization

Lecture 16
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Lecture Outline

• Global flow analysis

• Global constant propagation

• Liveness analysis
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Local Optimization

Recall the simple basic-block optimizations
– Constant propagation
– Dead code elimination

X := 3

Y := Z * W

Q := X + Y

X := 3

Y := Z * W

Q := 3 + Y

Y := Z * W

Q := 3 + Y
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Global Optimization

These optimizations can be extended to an 
entire control-flow graph

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X
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Global Optimization

These optimizations can be extended to an 
entire control-flow graph

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X
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Global Optimization

These optimizations can be extended to an 
entire control-flow graph

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * 3
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Correctness

• How do we know it is OK to globally propagate 
constants?

• There are situations where it is incorrect:
X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X
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Correctness (Cont.)

To replace a use of x by a constant k we must 
know that:

On every path to the use of x, the last 
assignment to x is x := k    **
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Example 1 Revisited

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X
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Example 2 Revisited

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X
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Discussion

• The correctness condition is not trivial to 
check

• “All paths” includes paths around loops and 
through branches of conditionals

• Checking the condition requires global analysis
– An analysis of the entire control-flow graph for one 

method body
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Global Analysis

Global optimization tasks share several traits:
– The optimization depends on knowing a property X 

at a particular point in program execution
– Proving X at any point requires knowledge of the 

entire method body
– It is OK to be conservative.  If the optimization 

requires X to be true, then want to know either
• X is definitely true
• Don’t know if X is true

– It is always safe to say “don’t know”
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Global Analysis (Cont.)

• Global dataflow analysis is a standard 
technique for solving problems with these 
characteristics

• Global constant propagation is one example of 
an optimization that requires global dataflow 
analysis
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Global Constant Propagation

• Global constant propagation can be performed 
at any point where ** holds

• Consider the case of computing ** for a single 
variable X at all program points
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Global Constant Propagation (Cont.)

• To make the problem precise, we associate one 
of the following values with X at every 
program point

Don’t know if X is a 
constant

*

X = constant cc

This statement is 
not reachable

#

interpretationvalue
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Example

X = *
X = 3

X = 3

X = 3
X = 4

X = *

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = 3

X = 3

X = *
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Using the Information

• Given global constant information, it is easy to 
perform the optimization
– Simply inspect the x = ? associated with a 

statement using x
– If x is constant at that point replace that use of x

by the constant

• But how do we compute the properties x = ?
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The Idea

The analysis of a complicated program can be 
expressed as a combination of simple rules 
relating the change in information between 

adjacent statements
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Explanation

• The idea is to “push” or “transfer” information 
from one statement to the next

• For each statement s, we compute information 
about the value of x immediately before and 
after s

Cin(x,s) = value of x before s
Cout(x,s) = value of x after s

Prof. Bodik  CS 164  Lecture 16, Fall 2004 20

Transfer Functions

• Define a transfer function that transfers 
information from one statement to another

• In the following rules, let statement s have 
immediate predecessor statements p1,…,pn
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Rule 1

if Cout(x, pi) = * for some i, then Cin(x, s) = *

s

X = *

X = *

X = ?X = ?X = ?
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Rule 2

If Cout(x, pi) = c  and Cout(x, pj) = d  and d ≠ c 
then Cin (x, s) = *

s

X = d

X = *

X = ?X = ?X = c
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Rule 3

if Cout(x, pi) = c  or # for all i,
then Cin(x, s) = c

s

X = c

X = c

X = #X = # X = c
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Rule 4

if Cout(x, pi) = # for all i,
then Cin(x, s) = #

s

X = #

X = #

X = #X = # X = #
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The Other Half

• Rules 1-4 relate the out of one statement to 
the in of the successor statement
– they propagate information forward across CFG 

edges

• Now we need rules relating the in of a 
statement to the out of the same statement
– to propagate information across statements
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Rule 5

Cout(x, s) = # if Cin(x, s) = #

s
X = #

X = #
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Rule 6

Cout(x, x := c) = c if c is a constant

x := c
X = ?

X = c
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Rule 7

Cout(x, x := f(…)) = *

x := f(…)
X = ?

X = *
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Rule 8

Cout(x, y := …) = Cin(x, y := …)  if x ≠ y

y := . . .
X = a

X = a
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An Algorithm

1. For every entry s to the program,  set       
Cin(x, s) = *

2. Set Cin(x, s) = Cout(x, s) = # everywhere else

3. Repeat until all points satisfy 1-8:
Pick s not satisfying 1-8 and update using the 

appropriate rule
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The Value #

• To understand why we need #, look at a loop

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = *
X = 3

X = 3

X = 3

X = 3

Prof. Bodik  CS 164  Lecture 16, Fall 2004 32

Discussion

• Consider the statement Y := 0
• To compute whether X is constant at this 

point, we need to know whether X is constant 
at the two predecessors
– X := 3
– A := 2 * X

• But info for A := 2 * X depends on its 
predecessors, including Y := 0!
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The Value # (Cont.)

• Because of cycles, all points must have values 
at all times

• Intuitively, assigning some initial value allows 
the analysis to break cycles

• The initial value # means “So far as we know, 
control never reaches this point”
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Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = *
X = #

X = #

X = #

X = #

X = #

X = #

X = #

3

3

3

3

3
3

3

We are done
when all rules
are satisfied !
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Another Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B
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Another Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

X = *
X = #

X = #

X = #

X = #

X = #

X = #

X = #

X = #

3

3

3

3

3
3
4

4
*

*
*

*

Must continue 
until all rules
are satisfied !
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Orderings

• We can simplify the presentation of the 
analysis by ordering the values

#   <   c   <   *

• Drawing a picture with “lower” values drawn 
lower, we get

#

*

-1 0 1… …
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Orderings (Cont.)

• * is the greatest value, # is the least
– All constants are in between and incomparable

• Let lub be the least-upper bound in this 
ordering

• Rules 1-4 can be written using lub:
Cin(x, s) = lub { Cout(x, p) | p is a predecessor of s }
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Termination

• Simply saying “repeat until nothing changes” 
doesn’t guarantee that eventually nothing 
changes

• The use of lub explains why the algorithm 
terminates
– Values start as # and only increase
– # can change to a constant, and a constant to *
– Thus, C_(x, s) can change at most twice
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Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps = 
Number of C_(….) values computed * 2 =
Number of program statements * 4
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Liveness Analysis

Once constants have been globally propagated, 
we would like to eliminate dead code

After constant propagation, X := 3 is dead 
(assuming this is the entire CFG)

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X
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Live and Dead

• The first value of x is 
dead (never used)

• The second value of x is 
live (may be used)

• Liveness is an important 
concept

X := 3

X := 4

Y := X
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Liveness

A variable x is live at statement s if
– There exists a statement s’ that uses x

– There is a path from s to s’

– That path has no intervening assignment to x
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Global Dead Code Elimination

• A statement x := … is dead code if x is dead 
after the assignment

• Dead statements can be deleted from the 
program

• But we need liveness information first . . .
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Computing Liveness

• We can express liveness in terms of 
information transferred between adjacent 
statements, just as in copy propagation

• Liveness is simpler than constant propagation, 
since it is a boolean property (true or false)
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Liveness Rule 1

Lout(x, p) =  ∨ { Lin(x, s) | s a successor of p }

p

X = true

X = true

X = ?X = ?X = ?
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Liveness Rule 2

Lin(x, s) = true if s refers to x on the rhs

…:= x + …
X = true

X = ?
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Liveness Rule 3

Lin(x, x := e) = false if e does not refer to x

x := e
X = false

X = ?
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Liveness Rule 4

Lin(x, s) = Lout(x, s) if s does not refer to x

s
X = a

X = a
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Algorithm

1. Let all L_(…) = false initially

2. Repeat until all statements s satisfy rules 1-4
Pick s where one of 1-4 does not hold and update 

using the appropriate rule
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Another Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false 

true

L(X) = false 

L(X) = false 
L(X) = false 

L(X) = false 
L(X) = false 
L(X) = false 
L(X) = false 

L(X) = false 

L(X) = false 

L(X) = false true true

true
true

true

true
trueL(X) = false 

true

Dead code
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Termination

• A value can change from false to true, but not 
the other way around

• Each value can change only once, so 
termination is guaranteed

• Once the analysis is computed, it is simple to 
eliminate dead code
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Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a forwards analysis: 
information is pushed from inputs to outputs

Liveness is a backwards analysis: information is 
pushed from outputs back towards inputs
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Analysis

• There are many other global flow analyses

• Most can be classified as either forward or 
backward

• Most also follow the methodology of local 
rules relating information between adjacent 
program points


