
Prof. Bodik CS 164 Lecture 16, Fall 2004 1

Global Optimization

Lecture 16

Prof. Bodik CS 164 Lecture 16, Fall 2004 2

Lecture Outline

• Global flow analysis

• Global constant propagation

• Liveness analysis

Prof. Bodik CS 164 Lecture 16, Fall 2004 3

Local Optimization

Recall the simple basic-block optimizations
– Constant propagation
– Dead code elimination

X := 3

Y := Z * W

Q := X + Y

X := 3

Y := Z * W

Q := 3 + Y

Y := Z * W

Q := 3 + Y

Prof. Bodik CS 164 Lecture 16, Fall 2004 4

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

Prof. Bodik CS 164 Lecture 16, Fall 2004 5

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

Prof. Bodik CS 164 Lecture 16, Fall 2004 6

Global Optimization

These optimizations can be extended to an
entire control-flow graph

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * 3

Prof. Bodik CS 164 Lecture 16, Fall 2004 7

Correctness

• How do we know it is OK to globally propagate
constants?

• There are situations where it is incorrect:
X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

Prof. Bodik CS 164 Lecture 16, Fall 2004 8

Correctness (Cont.)

To replace a use of x by a constant k we must
know that:

On every path to the use of x, the last
assignment to x is x := k **

Prof. Bodik CS 164 Lecture 16, Fall 2004 9

Example 1 Revisited

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

Prof. Bodik CS 164 Lecture 16, Fall 2004 10

Example 2 Revisited

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

Prof. Bodik CS 164 Lecture 16, Fall 2004 11

Discussion

• The correctness condition is not trivial to
check

• “All paths” includes paths around loops and
through branches of conditionals

• Checking the condition requires global analysis
– An analysis of the entire control-flow graph for one

method body

Prof. Bodik CS 164 Lecture 16, Fall 2004 12

Global Analysis

Global optimization tasks share several traits:
– The optimization depends on knowing a property X

at a particular point in program execution
– Proving X at any point requires knowledge of the

entire method body
– It is OK to be conservative. If the optimization

requires X to be true, then want to know either
• X is definitely true
• Don’t know if X is true

– It is always safe to say “don’t know”

Prof. Bodik CS 164 Lecture 16, Fall 2004 13

Global Analysis (Cont.)

• Global dataflow analysis is a standard
technique for solving problems with these
characteristics

• Global constant propagation is one example of
an optimization that requires global dataflow
analysis

Prof. Bodik CS 164 Lecture 16, Fall 2004 14

Global Constant Propagation

• Global constant propagation can be performed
at any point where ** holds

• Consider the case of computing ** for a single
variable X at all program points

Prof. Bodik CS 164 Lecture 16, Fall 2004 15

Global Constant Propagation (Cont.)

• To make the problem precise, we associate one
of the following values with X at every
program point

Don’t know if X is a
constant

*

X = constant cc

This statement is
not reachable

#

interpretationvalue

Prof. Bodik CS 164 Lecture 16, Fall 2004 16

Example

X = *
X = 3

X = 3

X = 3
X = 4

X = *

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = 3

X = 3

X = *

Prof. Bodik CS 164 Lecture 16, Fall 2004 17

Using the Information

• Given global constant information, it is easy to
perform the optimization
– Simply inspect the x = ? associated with a

statement using x
– If x is constant at that point replace that use of x

by the constant

• But how do we compute the properties x = ?

Prof. Bodik CS 164 Lecture 16, Fall 2004 18

The Idea

The analysis of a complicated program can be
expressed as a combination of simple rules
relating the change in information between

adjacent statements

Prof. Bodik CS 164 Lecture 16, Fall 2004 19

Explanation

• The idea is to “push” or “transfer” information
from one statement to the next

• For each statement s, we compute information
about the value of x immediately before and
after s

Cin(x,s) = value of x before s
Cout(x,s) = value of x after s

Prof. Bodik CS 164 Lecture 16, Fall 2004 20

Transfer Functions

• Define a transfer function that transfers
information from one statement to another

• In the following rules, let statement s have
immediate predecessor statements p1,…,pn

Prof. Bodik CS 164 Lecture 16, Fall 2004 21

Rule 1

if Cout(x, pi) = * for some i, then Cin(x, s) = *

s

X = *

X = *

X = ?X = ?X = ?

Prof. Bodik CS 164 Lecture 16, Fall 2004 22

Rule 2

If Cout(x, pi) = c and Cout(x, pj) = d and d ≠ c
then Cin (x, s) = *

s

X = d

X = *

X = ?X = ?X = c

Prof. Bodik CS 164 Lecture 16, Fall 2004 23

Rule 3

if Cout(x, pi) = c or # for all i,
then Cin(x, s) = c

s

X = c

X = c

X = #X = # X = c

Prof. Bodik CS 164 Lecture 16, Fall 2004 24

Rule 4

if Cout(x, pi) = # for all i,
then Cin(x, s) = #

s

X = #

X = #

X = #X = # X = #

Prof. Bodik CS 164 Lecture 16, Fall 2004 25

The Other Half

• Rules 1-4 relate the out of one statement to
the in of the successor statement
– they propagate information forward across CFG

edges

• Now we need rules relating the in of a
statement to the out of the same statement
– to propagate information across statements

Prof. Bodik CS 164 Lecture 16, Fall 2004 26

Rule 5

Cout(x, s) = # if Cin(x, s) = #

s
X = #

X = #

Prof. Bodik CS 164 Lecture 16, Fall 2004 27

Rule 6

Cout(x, x := c) = c if c is a constant

x := c
X = ?

X = c

Prof. Bodik CS 164 Lecture 16, Fall 2004 28

Rule 7

Cout(x, x := f(…)) = *

x := f(…)
X = ?

X = *

Prof. Bodik CS 164 Lecture 16, Fall 2004 29

Rule 8

Cout(x, y := …) = Cin(x, y := …) if x ≠ y

y := . . .
X = a

X = a

Prof. Bodik CS 164 Lecture 16, Fall 2004 30

An Algorithm

1. For every entry s to the program, set
Cin(x, s) = *

2. Set Cin(x, s) = Cout(x, s) = # everywhere else

3. Repeat until all points satisfy 1-8:
Pick s not satisfying 1-8 and update using the

appropriate rule

Prof. Bodik CS 164 Lecture 16, Fall 2004 31

The Value #

• To understand why we need #, look at a loop

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = *
X = 3

X = 3

X = 3

X = 3

Prof. Bodik CS 164 Lecture 16, Fall 2004 32

Discussion

• Consider the statement Y := 0
• To compute whether X is constant at this

point, we need to know whether X is constant
at the two predecessors
– X := 3
– A := 2 * X

• But info for A := 2 * X depends on its
predecessors, including Y := 0!

Prof. Bodik CS 164 Lecture 16, Fall 2004 33

The Value # (Cont.)

• Because of cycles, all points must have values
at all times

• Intuitively, assigning some initial value allows
the analysis to break cycles

• The initial value # means “So far as we know,
control never reaches this point”

Prof. Bodik CS 164 Lecture 16, Fall 2004 34

Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = *
X = #

X = #

X = #

X = #

X = #

X = #

X = #

3

3

3

3

3
3

3

We are done
when all rules
are satisfied !

Prof. Bodik CS 164 Lecture 16, Fall 2004 35

Another Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

Prof. Bodik CS 164 Lecture 16, Fall 2004 36

Another Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

X = *
X = #

X = #

X = #

X = #

X = #

X = #

X = #

X = #

3

3

3

3

3
3
4

4
*

*
*

*

Must continue
until all rules
are satisfied !

Prof. Bodik CS 164 Lecture 16, Fall 2004 37

Orderings

• We can simplify the presentation of the
analysis by ordering the values

< c < *

• Drawing a picture with “lower” values drawn
lower, we get

#

*

-1 0 1… …

Prof. Bodik CS 164 Lecture 16, Fall 2004 38

Orderings (Cont.)

• * is the greatest value, # is the least
– All constants are in between and incomparable

• Let lub be the least-upper bound in this
ordering

• Rules 1-4 can be written using lub:
Cin(x, s) = lub { Cout(x, p) | p is a predecessor of s }

Prof. Bodik CS 164 Lecture 16, Fall 2004 39

Termination

• Simply saying “repeat until nothing changes”
doesn’t guarantee that eventually nothing
changes

• The use of lub explains why the algorithm
terminates
– Values start as # and only increase
– # can change to a constant, and a constant to *
– Thus, C_(x, s) can change at most twice

Prof. Bodik CS 164 Lecture 16, Fall 2004 40

Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps =
Number of C_(….) values computed * 2 =
Number of program statements * 4

Prof. Bodik CS 164 Lecture 16, Fall 2004 41

Liveness Analysis

Once constants have been globally propagated,
we would like to eliminate dead code

After constant propagation, X := 3 is dead
(assuming this is the entire CFG)

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

Prof. Bodik CS 164 Lecture 16, Fall 2004 42

Live and Dead

• The first value of x is
dead (never used)

• The second value of x is
live (may be used)

• Liveness is an important
concept

X := 3

X := 4

Y := X

Prof. Bodik CS 164 Lecture 16, Fall 2004 43

Liveness

A variable x is live at statement s if
– There exists a statement s’ that uses x

– There is a path from s to s’

– That path has no intervening assignment to x

Prof. Bodik CS 164 Lecture 16, Fall 2004 44

Global Dead Code Elimination

• A statement x := … is dead code if x is dead
after the assignment

• Dead statements can be deleted from the
program

• But we need liveness information first . . .

Prof. Bodik CS 164 Lecture 16, Fall 2004 45

Computing Liveness

• We can express liveness in terms of
information transferred between adjacent
statements, just as in copy propagation

• Liveness is simpler than constant propagation,
since it is a boolean property (true or false)

Prof. Bodik CS 164 Lecture 16, Fall 2004 46

Liveness Rule 1

Lout(x, p) = ∨ { Lin(x, s) | s a successor of p }

p

X = true

X = true

X = ?X = ?X = ?

Prof. Bodik CS 164 Lecture 16, Fall 2004 47

Liveness Rule 2

Lin(x, s) = true if s refers to x on the rhs

…:= x + …
X = true

X = ?

Prof. Bodik CS 164 Lecture 16, Fall 2004 48

Liveness Rule 3

Lin(x, x := e) = false if e does not refer to x

x := e
X = false

X = ?

Prof. Bodik CS 164 Lecture 16, Fall 2004 49

Liveness Rule 4

Lin(x, s) = Lout(x, s) if s does not refer to x

s
X = a

X = a

Prof. Bodik CS 164 Lecture 16, Fall 2004 50

Algorithm

1. Let all L_(…) = false initially

2. Repeat until all statements s satisfy rules 1-4
Pick s where one of 1-4 does not hold and update

using the appropriate rule

Prof. Bodik CS 164 Lecture 16, Fall 2004 51

Another Example

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := X * X

X := 4

A < B

L(X) = false

true

L(X) = false

L(X) = false
L(X) = false

L(X) = false
L(X) = false
L(X) = false
L(X) = false

L(X) = false

L(X) = false

L(X) = false true true

true
true

true

true
trueL(X) = false

true

Dead code

Prof. Bodik CS 164 Lecture 16, Fall 2004 52

Termination

• A value can change from false to true, but not
the other way around

• Each value can change only once, so
termination is guaranteed

• Once the analysis is computed, it is simple to
eliminate dead code

Prof. Bodik CS 164 Lecture 16, Fall 2004 53

Forward vs. Backward Analysis

We’ve seen two kinds of analysis:

Constant propagation is a forwards analysis:
information is pushed from inputs to outputs

Liveness is a backwards analysis: information is
pushed from outputs back towards inputs

Prof. Bodik CS 164 Lecture 16, Fall 2004 54

Analysis

• There are many other global flow analyses

• Most can be classified as either forward or
backward

• Most also follow the methodology of local
rules relating information between adjacent
program points

