
1

Prof. Bodik CS 164 Lecture 5 1

Building a Parser I

CS164
3:30-5:00 TT

10 Evans

Prof. Bodik CS 164 Lecture 5
2

PA2

• in PA2, you’ll work in pairs, no exceptions
– except the exception if odd # of students

• hate team projects? form a “coalition team”
– team members work alone, but

• discuss design, clarify the handout, keep a common eye on
the newsgroup, etc

• share some or all code, at the very least their test cases!
– a win-win proposition:

• work mainly alone but hedge your grade
• each member submits his/her project, graded separately
• score: the lower-scoring team member gets a bonus equal

to half the difference between his and his partner’s score

Prof. Bodik CS 164 Lecture 5
3

Administrativia

• Section room change
– 3113 Etcheverry moving next door, to 3111 Etch.
– starting 9/22.

Prof. Bodik CS 164 Lecture 5
4

Overview

• What does a parser do, again?
– its two tasks
– parse tree vs. AST

• A hand-written parser
– and why it gets hard to get it right

What does a parser do?

Prof. Bodik CS 164 Lecture 5
6

Recall: The Structure of a Compiler

scanner

parser

checker

code gen

Decaf program (stream of characters)

stream of tokens

Abstract Syntax Tree (AST)

AST with annotations (types, declarations)

maybe x86

2

Prof. Bodik CS 164 Lecture 5
7

Recall: Syntactic Analysis

• Input: sequence of tokens from scanner
• Output: abstract syntax tree
• Actually,

– parser first builds a parse tree
– AST is then built by translating the parse tree
– parse tree rarely built explicitly; only determined

by, say, how parser pushes stuff to stack
– our lectures first focus on constructing the parse

tree; later we’ll show the translation to AST.

Prof. Bodik CS 164 Lecture 5
8

Example

• Decaf
4*(2+3)

• Parser input
NUM(4) TIMES LPAR NUM(2) PLUS NUM(3) RPAR

• Parser output (AST):
*

NUM(4) +

NUM(2) NUM(3)

Prof. Bodik CS 164 Lecture 5
9

Parse tree for the example

leaves are tokens
NUM(4) TIMES LPAR NUM(2) PLUS NUM(3) RPAR

EXPR

EXPR

EXPR

Prof. Bodik CS 164 Lecture 5
10

Another example

• Decaf
if (x == y) { a=1; }

• Parser input
IF LPAR ID EQ ID RPAR LBR ID AS INT SEMI RBR

• Parser output (AST):
IF-THEN

==

ID ID

=

ID INT

Prof. Bodik CS 164 Lecture 5
11

Parse tree for the example

IF LPAR ID == ID RPAR LBR ID = INT SEMI RBR

EXPR EXPR

STMT

BLOCK

STMT

leaves are tokens
Prof. Bodik CS 164 Lecture 5

12

Parse tree vs. abstract syntax tree

• Parse tree
– contains all tokens, including those that parser

needs “only” to discover
• intended nesting: parentheses, curly braces
• statement termination: semicolons

– technically, parse tree shows concrete syntax
• Abstract syntax tree (AST)

– abstracts away artifacts of parsing, by flattening
tree hierarchies, dropping tokens, etc.

– technically, AST shows abstract syntax

3

Prof. Bodik CS 164 Lecture 5
13

Comparison with Lexical Analysis

AST, built from
parse tree

Sequence of
tokens

Parser

Sequence of
tokens

Sequence of
characters

Lexer

OutputInputPhase

Prof. Bodik CS 164 Lecture 5
14

Summary

• Parser performs two tasks:

– syntax checking
• a program with a syntax error may produce an AST that’s

different than intended by the programmer

– parse tree construction
• usually implicit
• used to build the AST

How to build a parser for Decaf?

Prof. Bodik CS 164 Lecture 5
16

Writing the parser

• Can do it all by hand, of course
– ok for small languages, but hard for Decaf

• Just like with the scanner, we’ll write
ourselves a parser generator
– we’ll concisely describe Decaf’s syntactic structure

• that is, how expressions, statements, definitions look like
– and the generator produces a working parser

• Let’s start with a hand-written parser
– to see why we want a parser generator

Prof. Bodik CS 164 Lecture 5
17

First example: balanced parens

• Our problem: check the syntax
– are parentheses in input string balanced?

• The simple language
– parenthesized number literals
– Ex.: 3, (4), ((1)), (((2))), etc

• Before we look at the parser
– why aren’t finite automata sufficient for this task?

Prof. Bodik CS 164 Lecture 5
18

Why can’t DFA/NFA’s find syntax errors?

• When checking balanced
parentheses, FA’s can either

– accept all correct (i.e.,
balanced) programs but also
some incorrect ones, or

– reject all incorrect programs
but also reject some correct
ones.

• Problem: finite state
– can’t count parens seen so far

()

)

(
)

()

)

(

)

)

4

Prof. Bodik CS 164 Lecture 5
19

Parser code preliminaries

• Let TOKEN be an enumeration type of tokens:
– INT, OPEN, CLOSE, PLUS, TIMES, NUM, LPAR,

RPAR

• Let the global in[] be the input string of
tokens

• Let the global next be an index in the token
string

Prof. Bodik CS 164 Lecture 5
20

Parsers use stack to implement infinite state

Balanced parentheses parser:

void Parse() {
nextToken = in[next++];
if (nextToken == NUM) return;

if (nextToken != LPAR) print(“syntax error”);
Parse();
if (in[next++] != RPAR) print(“syntax error”);

}

Prof. Bodik CS 164 Lecture 5
21

Where’s the parse tree constructed?

• In this parser, the parse is given by the call tree:
• For the input string (((1))) :

Parse()

Parse()

Parse()

Parse()

1

(

(

()

)

)

Prof. Bodik CS 164 Lecture 5
22

Second example: subtraction expressions

The language of this example:
1, 1-2, 1-2-3, (1-2)-3, (2-(3-4)), etc

void Parse() {
if (in[++next] == NUM) {

if (in[++next] == MINUS) { Parse(); }
} else if (in[next] == LPAR) {

Parse();
if (in[++next] != RPAR) print(“syntax error”);

} else print(“syntax error”);
}

Prof. Bodik CS 164 Lecture 5
23

Subtraction expressions continued

• Observations:
– a more complex language

• hence, harder to see how the parser works (and if it works
correctly at all)

– the parse tree is actually not really what we want
• consider input 3-2-1
• what’s undesirable about this parse tree’s structure?

-3 Parse()

-

1

2 Parse()

Parse()

Prof. Bodik CS 164 Lecture 5
24

We need a clean syntactic description

• Just like with the scanner, writing the parser
by hand is painful and error-prone
– consider adding +, *, / to the last example!

• So, let’s separate the what and the how
– what: the syntactic structure, described with a

context-free grammar
– how: the parser, which reads the grammar, the

input and produces the parse tree

