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Building a Parser II

CS164
3:30-5:00 TT

10 Evans
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Administrativia

• PA2 assigned today
– due in 12 days

• WA1 assigned today
– due in a week
– it’s a practice for the exam

• First midterm
– Oct 5
– will contain some project-inspired questions
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Overview

• Grammars
• derivations
• Recursive descent parser
• Eliminating left recursion
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Grammars

• Programming language constructs have recursive 
structure.  
– which is why our hand-written parser had this structure, too

• An expression is either:
• number, or
• variable, or
• expression + expression, or
• expression - expression, or
• ( expression ), or
• …
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Context-free grammars (CFG)

• a natural notation for this recursive structure

• grammar for our balanced parens expressions:
BalancedExpression d a | ( BalancedExpression )

• describes (generates) strings of symbols:
– a, (a), ((a)), (((a))), …

• like regular expressions but can refer to 
– other expressions (here, BalancedExpression)
– and do this recursively (giving is “non-finite state”)
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Example: arithmetic expressions

• Simple arithmetic expressions:
E d n  |  id  |  ( E )  |  E + E  |  E * E

• Some elements of this language:
– id 
– n
– ( n )
– n + id
– id * ( id + id )
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Symbols: Terminals and Nonterminals

• grammars use two kinds of symbols
• terminals: 

– no rules for replacing them
– once generated, terminals are permanent
– these are tokens of our language 

• nonterminals:
– to be replaced (expanded)
– in regular expression lingo, these serve as names of 

expressions
– start non-terminal: the first symbol to be expanded
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Notational Conventions

• In these lecture notes, let’s adopt a notation:

– Non-terminals are written upper-case

– Terminals are written lower-case 
or as symbols, e.g., token LPAR is written as ( 

– The start symbol is the left-hand side of the first 
production
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Derivations

• This is how a grammar generates strings:
– think of grammar rules (called productions) as 

rewrite rules
• Derivation: the process of generating a string

1. begin with the start non-terminal
2. rewrite the non-terminal with some of its 

productions
3. select a non-terminal in your current string

i. if no non-terminal left, done.  
ii. otherwise go to step 2.
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Example: derivation

Grammar: E d n  |  id  |  ( E )  |  E + E  |  E * E

• a derivation:
E rewrite E with ( E )
( E ) rewrite E with n
( n ) this is the final string of terminals

• another derivation (written more concisely):
E d ( E ) d ( E * E ) d ( E + E * E ) d ( n + E * E ) d ( n + id * E ) 

d ( n + id * id )
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So how do derivations help us in parsing?

• A program (a string of tokens) has no syntax 
error if it can be derived from the grammar.
– but so far you only know how to derive some (any) 

string, not how to check if a given string is 
derivable

• So how to do parsing?
– a naïve solution: derive all possible strings and 

check if your program is among them
– not as bad as it sounds: there are parsers that do 

this, kind of.  Coming soon.
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Decaf Example

A fragment of Decaf:

STMT d while ( EXPR ) STMT
|  id ( EXPR ) ;

EXPR d EXPR + EXPR
|  EXPR – EXPR
|  EXPR < EXPR
|  ( EXPR )
|  id 
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Decaf Example (Cont.)

Some elements of the (fragment of) language:

Question: One of the 
strings is not from 
the language.
Which one?

id ( id ) ;
id ( ( ( ( id ) ) ) ) ;
while ( id < id )  id ( id ) ;
while ( while ( id ) ) id ( id ) ;
while ( id ) while ( id ) while ( id ) id ( id ) ;

STMT d while ( EXPR ) STMT
|  id ( EXPR ) ;

EXPR d EXPR + EXPR  |  EXPR – EXPR
|  EXPR < EXPR |  ( EXPR )  |  id 
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CFGs (definition)

• A CFG consists of
– A set of terminal symbols T
– A set of non-terminal symbols N
– A start symbol S (a non-terminal)
– A set of productions:

produtions are of two forms (X N)
X d ε , or         
X d Y1 Y2 ... Yn where   Yi N 4 T
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context-free grammars

• what is “context-free”?
– means the grammar is not context-sensitive

• context-sensitive gramars
– can describe more languages than CFGs
– because their productions restrict when a non-

terminal can be rewritten.  An example production:
d N d d A B c

– meaning: N can be rewritten into ABc only when 
preceded by d

– can be used to encode semantic checks, but parsing 
is hard
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Now let’s parse a string

• recursive descent parser derives all strings 
– until it matches derived string with the input string
– or until it is sure there is a syntax error
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Recursive Descent Parsing

• Consider the grammar
E → T + E | T
T → int | int * T | ( E )

• Token stream is:   int5 * int2
• Start with top-level non-terminal E

• Try the rules for E in order
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Recursive Descent Parsing. Example (Cont.)

• Try E0 → T1 + E2
• Then try a rule for T1 → ( E3 )

– But ( does not match input token int5

• Try T1 → int . Token matches. 
– But + after T1 does not match input token *

• Try T1 → int * T2
– This will match but + after T1 will be unmatched

• Have exhausted the choices for T1
– Backtrack to choice for E0
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Recursive Descent Parsing. Example (Cont.)

• Try E0 → T1
• Follow same steps as before for T1

– And succeed with T1 → int * T2 and T2 → int
– With the following parse tree

E0

T1

int5 * T2

int2
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A Recursive Descent Parser (2)

• Define boolean functions that check the token 
string for a match of
– A given token terminal

bool term(TOKEN tok) { return in[next++] == tok; }
– A given production of S (the nth)

bool Sn() { … }
– Any production of S:                 

bool S() { … }

• These functions advance next
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A Recursive Descent Parser (3)

• For production E → T + E
bool E1() { return T() && term(PLUS) && E(); }

• For production E → T
bool E2() { return T(); }

• For all productions of E (with backtracking)
bool E() {
int save = next;
return    (next = save, E1()) 

|| (next = save,  E2());   }
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A Recursive Descent Parser (4)

• Functions for non-terminal T
bool T1() { return term(OPEN) && E() && term(CLOSE); }
bool T2() { return term(INT) && term(TIMES) && T(); }
bool T3() { return term(INT); }

bool T() {
int save = next;
return    (next = save, T1()) 

|| (next = save,  T2()) 
|| (next = save,  T3()); }
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Recursive Descent Parsing. Notes.

• To start the parser 
– Initialize next to point to first token
– Invoke E()

• Notice how this simulates our backtracking 
example from lecture

• Easy to implement by hand
• Predictive parsing is more efficient
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Recursive Descent Parsing. Notes.

• Easy to implement by hand
– An example implementation is provided as a 

supplement “Recursive Descent Parsing”

• But does not always work …
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Recursive-Descent Parsing

• Parsing: given a string of tokens t1 t2 ... tn, find 
its parse tree

• Recursive-descent parsing: Try all the 
productions exhaustively
– At a given moment the fringe of the parse tree is: 

t1 t2 … tk A …
– Try all the productions for A: if A d BC is a 

production, the new fringe is t1 t2 … tk B C … 
– Backtrack when the fringe doesn’t match the string
– Stop when there are no more non-terminals
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When Recursive Descent Does Not Work

• Consider a production S → S a:
– In the process of parsing S we try the above rule
– What goes wrong?

• A left-recursive grammar has a non-terminal S
S →+ Sα for some α

• Recursive descent does not work in such cases
– It goes into an ∞ loop
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Elimination of Left Recursion

• Consider the left-recursive grammar
S → S α | β

• S generates all strings starting with a β and 
followed by a number of α

• Can rewrite using right-recursion
S → β S’
S’ → α S’ | ε
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Elimination of Left-Recursion. Example

• Consider the grammar
S d 1 | S 0 ( β = 1 and α = 0 )

can be rewritten as
S d 1 S’
S’ d 0 S’ | ε
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More Elimination of Left-Recursion

• In general
S → S α1 | … | S αn | β1 | … | βm

• All strings derived from S start with one of 
β1,…,βm and continue with several instances of
α1,…,αn

• Rewrite as
S → β1 S’ | … | βm S’
S’ → α1 S’ | … | αn S’ | ε
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General Left Recursion

• The grammar 
S → A α | δ
A → S β

is also left-recursive because
S →+ S β α

• This left-recursion can also be eliminated
• See [ASU], Section 4.3 for general algorithm
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Summary of Recursive Descent

• Simple and general parsing strategy
– Left-recursion must be eliminated first
– … but that can be done automatically

• Unpopular because of backtracking
– Thought to be too inefficient

• In practice, backtracking is eliminated by 
restricting the grammar


