
1

Prof. Bodik CS 164 Lecture 6 1

Building a Parser II

CS164
3:30-5:00 TT

10 Evans

Prof. Bodik CS 164 Lecture 6
2

Administrativia

• PA2 assigned today
– due in 12 days

• WA1 assigned today
– due in a week
– it’s a practice for the exam

• First midterm
– Oct 5
– will contain some project-inspired questions

Prof. Bodik CS 164 Lecture 6
3

Overview

• Grammars
• derivations
• Recursive descent parser
• Eliminating left recursion

Prof. Bodik CS 164 Lecture 6
4

Grammars

• Programming language constructs have recursive
structure.
– which is why our hand-written parser had this structure, too

• An expression is either:
• number, or
• variable, or
• expression + expression, or
• expression - expression, or
• (expression), or
• …

Prof. Bodik CS 164 Lecture 6
5

Context-free grammars (CFG)

• a natural notation for this recursive structure

• grammar for our balanced parens expressions:
BalancedExpression d a | (BalancedExpression)

• describes (generates) strings of symbols:
– a, (a), ((a)), (((a))), …

• like regular expressions but can refer to
– other expressions (here, BalancedExpression)
– and do this recursively (giving is “non-finite state”)

Prof. Bodik CS 164 Lecture 6
6

Example: arithmetic expressions

• Simple arithmetic expressions:
E d n | id | (E) | E + E | E * E

• Some elements of this language:
– id
– n
– (n)
– n + id
– id * (id + id)

2

Prof. Bodik CS 164 Lecture 6
7

Symbols: Terminals and Nonterminals

• grammars use two kinds of symbols
• terminals:

– no rules for replacing them
– once generated, terminals are permanent
– these are tokens of our language

• nonterminals:
– to be replaced (expanded)
– in regular expression lingo, these serve as names of

expressions
– start non-terminal: the first symbol to be expanded

Prof. Bodik CS 164 Lecture 6
8

Notational Conventions

• In these lecture notes, let’s adopt a notation:

– Non-terminals are written upper-case

– Terminals are written lower-case
or as symbols, e.g., token LPAR is written as (

– The start symbol is the left-hand side of the first
production

Prof. Bodik CS 164 Lecture 6
9

Derivations

• This is how a grammar generates strings:
– think of grammar rules (called productions) as

rewrite rules
• Derivation: the process of generating a string

1. begin with the start non-terminal
2. rewrite the non-terminal with some of its

productions
3. select a non-terminal in your current string

i. if no non-terminal left, done.
ii. otherwise go to step 2.

Prof. Bodik CS 164 Lecture 6
10

Example: derivation

Grammar: E d n | id | (E) | E + E | E * E

• a derivation:
E rewrite E with (E)
(E) rewrite E with n
(n) this is the final string of terminals

• another derivation (written more concisely):
E d (E) d (E * E) d (E + E * E) d (n + E * E) d (n + id * E)

d (n + id * id)

Prof. Bodik CS 164 Lecture 6
11

So how do derivations help us in parsing?

• A program (a string of tokens) has no syntax
error if it can be derived from the grammar.
– but so far you only know how to derive some (any)

string, not how to check if a given string is
derivable

• So how to do parsing?
– a naïve solution: derive all possible strings and

check if your program is among them
– not as bad as it sounds: there are parsers that do

this, kind of. Coming soon.

Prof. Bodik CS 164 Lecture 6
12

Decaf Example

A fragment of Decaf:

STMT d while (EXPR) STMT
| id (EXPR) ;

EXPR d EXPR + EXPR
| EXPR – EXPR
| EXPR < EXPR
| (EXPR)
| id

3

Prof. Bodik CS 164 Lecture 6
13

Decaf Example (Cont.)

Some elements of the (fragment of) language:

Question: One of the
strings is not from
the language.
Which one?

id (id) ;
id ((((id)))) ;
while (id < id) id (id) ;
while (while (id)) id (id) ;
while (id) while (id) while (id) id (id) ;

STMT d while (EXPR) STMT
| id (EXPR) ;

EXPR d EXPR + EXPR | EXPR – EXPR
| EXPR < EXPR | (EXPR) | id

Prof. Bodik CS 164 Lecture 6
14

CFGs (definition)

• A CFG consists of
– A set of terminal symbols T
– A set of non-terminal symbols N
– A start symbol S (a non-terminal)
– A set of productions:

produtions are of two forms (X N)
X d ε , or
X d Y1 Y2 ... Yn where Yi N 4 T

Prof. Bodik CS 164 Lecture 6
15

context-free grammars

• what is “context-free”?
– means the grammar is not context-sensitive

• context-sensitive gramars
– can describe more languages than CFGs
– because their productions restrict when a non-

terminal can be rewritten. An example production:
d N d d A B c

– meaning: N can be rewritten into ABc only when
preceded by d

– can be used to encode semantic checks, but parsing
is hard

Prof. Bodik CS 164 Lecture 6
16

Now let’s parse a string

• recursive descent parser derives all strings
– until it matches derived string with the input string
– or until it is sure there is a syntax error

Prof. Bodik CS 164 Lecture 6
17

Recursive Descent Parsing

• Consider the grammar
E → T + E | T
T → int | int * T | (E)

• Token stream is: int5 * int2
• Start with top-level non-terminal E

• Try the rules for E in order

Prof. Bodik CS 164 Lecture 6
18

Recursive Descent Parsing. Example (Cont.)

• Try E0 → T1 + E2
• Then try a rule for T1 → (E3)

– But (does not match input token int5

• Try T1 → int . Token matches.
– But + after T1 does not match input token *

• Try T1 → int * T2
– This will match but + after T1 will be unmatched

• Have exhausted the choices for T1
– Backtrack to choice for E0

4

Prof. Bodik CS 164 Lecture 6
19

Recursive Descent Parsing. Example (Cont.)

• Try E0 → T1
• Follow same steps as before for T1

– And succeed with T1 → int * T2 and T2 → int
– With the following parse tree

E0

T1

int5 * T2

int2

Prof. Bodik CS 164 Lecture 6
20

A Recursive Descent Parser (2)

• Define boolean functions that check the token
string for a match of
– A given token terminal

bool term(TOKEN tok) { return in[next++] == tok; }
– A given production of S (the nth)

bool Sn() { … }
– Any production of S:

bool S() { … }

• These functions advance next

Prof. Bodik CS 164 Lecture 6
21

A Recursive Descent Parser (3)

• For production E → T + E
bool E1() { return T() && term(PLUS) && E(); }

• For production E → T
bool E2() { return T(); }

• For all productions of E (with backtracking)
bool E() {
int save = next;
return (next = save, E1())

|| (next = save, E2()); }

Prof. Bodik CS 164 Lecture 6
22

A Recursive Descent Parser (4)

• Functions for non-terminal T
bool T1() { return term(OPEN) && E() && term(CLOSE); }
bool T2() { return term(INT) && term(TIMES) && T(); }
bool T3() { return term(INT); }

bool T() {
int save = next;
return (next = save, T1())

|| (next = save, T2())
|| (next = save, T3()); }

Prof. Bodik CS 164 Lecture 6
23

Recursive Descent Parsing. Notes.

• To start the parser
– Initialize next to point to first token
– Invoke E()

• Notice how this simulates our backtracking
example from lecture

• Easy to implement by hand
• Predictive parsing is more efficient

Prof. Bodik CS 164 Lecture 6
24

Recursive Descent Parsing. Notes.

• Easy to implement by hand
– An example implementation is provided as a

supplement “Recursive Descent Parsing”

• But does not always work …

5

Prof. Bodik CS 164 Lecture 6
25

Recursive-Descent Parsing

• Parsing: given a string of tokens t1 t2 ... tn, find
its parse tree

• Recursive-descent parsing: Try all the
productions exhaustively
– At a given moment the fringe of the parse tree is:

t1 t2 … tk A …
– Try all the productions for A: if A d BC is a

production, the new fringe is t1 t2 … tk B C …
– Backtrack when the fringe doesn’t match the string
– Stop when there are no more non-terminals

Prof. Bodik CS 164 Lecture 6
26

When Recursive Descent Does Not Work

• Consider a production S → S a:
– In the process of parsing S we try the above rule
– What goes wrong?

• A left-recursive grammar has a non-terminal S
S →+ Sα for some α

• Recursive descent does not work in such cases
– It goes into an ∞ loop

Prof. Bodik CS 164 Lecture 6
27

Elimination of Left Recursion

• Consider the left-recursive grammar
S → S α | β

• S generates all strings starting with a β and
followed by a number of α

• Can rewrite using right-recursion
S → β S’
S’ → α S’ | ε

Prof. Bodik CS 164 Lecture 6
28

Elimination of Left-Recursion. Example

• Consider the grammar
S d 1 | S 0 (β = 1 and α = 0)

can be rewritten as
S d 1 S’
S’ d 0 S’ | ε

Prof. Bodik CS 164 Lecture 6
29

More Elimination of Left-Recursion

• In general
S → S α1 | … | S αn | β1 | … | βm

• All strings derived from S start with one of
β1,…,βm and continue with several instances of
α1,…,αn

• Rewrite as
S → β1 S’ | … | βm S’
S’ → α1 S’ | … | αn S’ | ε

Prof. Bodik CS 164 Lecture 6
30

General Left Recursion

• The grammar
S → A α | δ
A → S β

is also left-recursive because
S →+ S β α

• This left-recursion can also be eliminated
• See [ASU], Section 4.3 for general algorithm

6

Prof. Bodik CS 164 Lecture 6
31

Summary of Recursive Descent

• Simple and general parsing strategy
– Left-recursion must be eliminated first
– … but that can be done automatically

• Unpopular because of backtracking
– Thought to be too inefficient

• In practice, backtracking is eliminated by
restricting the grammar

