
1

Prof. Bodik CS 164 Lecture 9 1

Bottom-up parsing

CS164
3:30-5:00 TT

10 Evans

Prof. Bodik CS 164 Lecture 9
2

Welcome to the running example

• we’ll build a parser for this grammar:
E d E + T | E – T | T
T d T * int | int

• see, the grammar is
– left-recursive
– not left-factored

• … and our parser won’t mind!
– we can make the grammar ambiguous, too

Prof. Bodik CS 164 Lecture 9
3

Example input, parse tree

• input:
int + int * int

• its parse tree:

int + *int int

T

E

T

T

E

Prof. Bodik CS 164 Lecture 9
4

Chaotic bottom-up parsing

Key idea: build the derivation in reverse

int + *int int

E

E

T

TT

E

E + T

T + T

T + T * int

int + T * int

int + int * int

Prof. Bodik CS 164 Lecture 9
5

Chaotic bottom-up parsing

• The algorithm:
1. stare at the input string s

• feel free to look anywhere in the string
2. find in s a right-hand side r of a production Ndr

• ex.: found int for a production T d int
3. reduce the found string r into its non-terminal N

– ex.: replace int with T
4. if string reduced to start non-terminal

– we’re done, string is parsed, we got a parse tree
5. otherwise continue in step 1

Prof. Bodik CS 164 Lecture 9
6

Don’t celebrate yet!

• not guaranteed to parse a correct string
– is this surprising?

• example:

int + *int int

E

T

and we are stuck

int + E * int

int + T * int

int + int * int

2

Prof. Bodik CS 164 Lecture 9
7

Lesson from chaotic parser

• Lesson:
– if you’re lucky in selecting the string to reduce

next, then you will successfully parse the string
• How to “beat the odds”?

– that is, how to find a lucky sequence of reductions
that gives us a derivation of the input string?

– use non-determinism!

Prof. Bodik CS 164 Lecture 9
8

What’s this non-determinism, again?

• You took cs164, then became a stock broker:
– want 16 celebrities sign you as their private broker
– here’s how: send free advice to 1024 celebrities

• to half of them: “MSFT will go up tomorrow, buy now”
• guess what’s your advice for the other 512 folks

– send free advice to 512 who got the correct advice
• to half of them: “AAPL will go down tomorrow, sell now”

– …
– then apply for a broker job with the 16 who got six

correct predictions in a row
• that’s sorta how we’ll parse the string

Prof. Bodik CS 164 Lecture 9
9

Non-deterministic chaotic parser

The algorithm:
1. find in input all strings that can be reduced

– assume there are k of them
2. create k copies of the (partially reduced) input

– it’s like spawning k identical instances of the parser
3. in each instance, perform one of k reductions

– and then go to step 1, advancing and further spawning
all parser instances

4. stop when at least one parser instance reduced
the string to start non-terminal

Prof. Bodik CS 164 Lecture 9
10

Properties of the n.d. chaotic parser

Claim:
– the input will be parsed by (at least) one parser

instance
But:

– exponential blowup: k*k*k*…*k parser copies
– (how many k’s are there?)

Also:
– Multiple (usually many) instances of the parser

produce the correct parse tree. This is wasteful.

Prof. Bodik CS 164 Lecture 9
11

Overview

• Chaotic bottom-up parser
– it will give us the parse tree, but only if it’s lucky

• Non-deterministic bottom-up parser
– creates many parser instances to make sure at

least one builds the parse trees for the string
– an instance either builds the parse tree or gets

stuck
• Non-deterministic LR parser (next)

– restrict where a reduction can be made
– as a result, fewer instances necessary

Prof. Bodik CS 164 Lecture 9
12

Non-deterministic LR parser

• What we want:
– create multiple parser instances

• to find the lucky sequence of reductions
– but the parse tree is found by at most one

instance
• zero if the input has syntax error

3

Prof. Bodik CS 164 Lecture 9
13

Two simple rules to restrict # of instances

1. split the input in two parts:
• right: unexamined by parser
• left: in the parser (we’ll do the reductions here)

int + int * int after reduction: T + int * int

2. reductions allowed only on right part next to split

allowed: T + int * int after reduction: T + T * int
not allowed: int + int * int after reduction: T + int * int

hence, left part of string can be kept on the stack

Prof. Bodik CS 164 Lecture 9
14

Wait a minute!

Aren’t these restrictions fatally severe?
– the doubt: no instance succeeds to parse the input

No. recall: one parse tree w multiple derivations
– in n.d. chaotic parser, the instances that build the

same parse tree each follow a different derivation

Prof. Bodik CS 164 Lecture 9
15

Wait a minute! (cont)

recall: two interesting derivations
– left-most derivation, right-most derivation

LR parser builds right-most derivation
– but does so in reverse: first step of derivation is the last

reduction (the reduction to start nonterminal)
– example coming in two slides

hence the name:
– L: scan input left to right
– R: right-most derivation

so, if there is a parse tree, LR parser will build it!
– this is the key theorem

Prof. Bodik CS 164 Lecture 9
16

LR parser actions

• The left part of the string will be on the stack
– the symbol is the top of stack

• Two simple actions
– reduce:

• like in chaotic parser,
• but must replace a string on top of stack

– shift:
• shifts to the right,
• which moves a new token from input onto stack, potentially

enabling more reductions

• These actions will be chosen non-deterministically

Prof. Bodik CS 164 Lecture 9
17

Example of a correct LR parser sequence

A “lucky” sequence of shift/reduce actions (string parsed!):

int + *int int

E

E

T

TT

E
E + T
E + T * int
E + T * int
E + T * int
E + int * int
E + int * int
E + int * int
T + int * int
int + int * int

int + int * int
Prof. Bodik CS 164 Lecture 9

18

Example of an incorrect LR parser sequence

Where did the parser instance make the mistake?

int + *int int

T

TT

stuck! why can’t we reduce to E + T ?
T + T
T + T * int
T + T * int
T + T * int
T + int * int
T + int * int
T + int * int
int + int * int

int + int * int

4

Prof. Bodik CS 164 Lecture 9
19

Non-deterministic LR parser

The algorithm: (compare with chaotic n.d. parser)
1. find all reductions allowed on top of stack

– assume there are k of them
2. create k new identical instances of the parser
3. in each instance, perform one of the k reductions;

in original instance, do no reduction, shift instead
– and go to step 1

4. stop when a parser instance reduced the string to
start non-terminal

Prof. Bodik CS 164 Lecture 9
20

Overview

• Chaotic bottom-up parser
– tries one derivation (in reverse)

• Non-deterministic bottom-up parser
– tries all ways to build the parse tree

• Non-deterministic LR parser
– restricts where a reduction can be made
– as a result,

• only one instance succeeds (on an unambiguous grammar)
• all others get stuck

• Generalized LR parser (next)
– idea: kill off instances that are going to get stuck ASAP

Prof. Bodik CS 164 Lecture 9
21

Revisit the incorrect LR parser sequence

Key question:
What was the earliest stack configuration where we
could tell this instance was doomed to get stuck?

int + *int int

T

TT

T + T
T + T * int
T + T * int
T + T * int
T + int * int
T + int * int
T + int * int
int + int * int

int + int * int

Prof. Bodik CS 164 Lecture 9
22

Doomed stack configurations

The parser made a mistake to shift to
T + int * int

rather than reducing to
E + int * int

The first configuration is doomed
– because the T will never appear on top of stack so

that it can be reduced to E
– hence this instance of the parser can be killed (it

will never produce a parse tree)

Prof. Bodik CS 164 Lecture 9
23

How to find doomed parser instances?

• Look at their stack!
• How to tell if a stack is doomed:

– list all legal (non yet doomed) stack configurations
– if a stack is not legal, kill the instance

• Listing legal stack configurations
– list prefixes of all right-most derivations until you

see a pattern
– describe the pattern as a DFA
– if the stack configuration is not from the DFA, it’s

doomed

Prof. Bodik CS 164 Lecture 9
24

The stack-checking DFA

note: all states are accepting states

T

*

int

int

T

Tint

T

T

-

+

T

*

T

int

5

Prof. Bodik CS 164 Lecture 9
25

Constructing the stack-checking DFA

Ed*E+T
Ed*E-T
Ed*T
Td*T*int
Td*int

Tdint*

EdT*
TdT**int

TdT**int

TdT*int*

EdE*+T
EdE*-T

E dE+*T
Td*T*int
Td*int

E dE-*T
Td*T*int
Td*int

E dE+T*

E dE-T*

TdT**int

note: this is knows as SLR construction

T

*

intint

T

T
int

T

T

-

+

T

*

T

int

