
1

Prof. Bodik CS 164 Fall 2004 1

Run-time organization
Lecture 12

Prof. Bodik CS 164 Fall 2004 2

Status

• We have covered the front-end phases
– Lexical analysis
– Parsing
– Semantic analysis

• Next are the back-end phases
– Optimization
– Code generation

• We’ll do code generation first . . .

Prof. Bodik CS 164 Fall 2004 3

Run-time environments

• Before discussing code generation, we need to
understand what we are trying to generate

• There are a number of standard techniques
for structuring executable code that are
widely used

Prof. Bodik CS 164 Fall 2004 4

Outline

• Management of run-time resources

• Correspondence between static (compile-time)
and dynamic (run-time) structures

• Storage organization

Prof. Bodik CS 164 Fall 2004 5

Run-time Resources

• Execution of a program is initially under the
control of the operating system

• When a program is invoked:
– The OS allocates space for the program
– The code is loaded into part of the space
– The OS jumps to the entry point (i.e., “main”)

Prof. Bodik CS 164 Fall 2004 6

Memory Layout

Low Address

High Address

Memory

Code

Other Space

2

Prof. Bodik CS 164 Fall 2004 7

Notes

• By tradition, pictures of machine organization
have:
– Low address at the top
– High address at the bottom
– Lines delimiting areas for different kinds of data

• These pictures are simplifications
– E.g., not all memory need be contiguous

Prof. Bodik CS 164 Fall 2004 8

What is Other Space?

• Holds all data for the program
• Other Space = Data Space

• Compiler is responsible for:
– Generating code
– Orchestrating use of the data area

Prof. Bodik CS 164 Fall 2004 9

Code Generation Goals

• Two goals:
– Correctness
– Speed

• Most complications in code generation come
from trying to be fast as well as correct

Prof. Bodik CS 164 Fall 2004 10

Assumptions about Execution

1. Execution is sequential; control moves from
one point in a program to another in a well-
defined order

2. When a procedure is called, control
eventually returns to the point immediately
after the call

Do these assumptions always hold?

Prof. Bodik CS 164 Fall 2004 11

Activations

• An invocation of procedure P is an activation
of P

• The lifetime of an activation of P is
– All the steps to execute P
– Including all the steps in procedures P calls

Prof. Bodik CS 164 Fall 2004 12

Lifetimes of Variables

• The lifetime of a variable x is the portion of
execution in which x is defined

• Note that
– Lifetime is a dynamic (run-time) concept
– Scope is a static concept

3

Prof. Bodik CS 164 Fall 2004 13

Activation Trees

• Assumption (2) requires that when P calls Q,
then Q returns before P does

• Lifetimes of procedure activations are
properly nested

• Activation lifetimes can be depicted as a tree

Prof. Bodik CS 164 Fall 2004 14

Example

class Main {
int g() { return 1; }
int f() {return g(); }
void main() { g(); f(); }

}
Main

fg

g

Prof. Bodik CS 164 Fall 2004 15

Example 2

class Main {
int g() { return 1; }
int f(int x) {

if (x == 0) { return g(); }
else { return f(x - 1); }

}
void main() { f(3); }

}

What is the activation tree for this example?

Prof. Bodik CS 164 Fall 2004 16

Notes

• The activation tree depends on run-time
behavior

• The activation tree may be different for
every program input

• Since activations are properly nested, a stack
can track currently active procedures

Prof. Bodik CS 164 Fall 2004 17

Example

class Main {
int g() { return 1; }
int f() { return g(); }
void main() { g(); f(); }

}
Main Stack

Main

Prof. Bodik CS 164 Fall 2004 18

Example

Main

g

Stack

Main
g

class Main {
int g() { return 1; }
int f() { return g(); }
void main() { g(); f(); }

}

4

Prof. Bodik CS 164 Fall 2004 19

Example

Main

g f

Stack

Main
f

class Main {
int g() { return 1; }
int f() { return g(); }
void main() { g(); f(); }

}

Prof. Bodik CS 164 Fall 2004 20

Example

Main

fg

g

Stack

Main
f
g

class Main {
int g() { return 1; }
int f() { return g(); }
void main() { g(); f(); }

}

Prof. Bodik CS 164 Fall 2004 21

Revised Memory Layout

Low Address

High Address

Memory

Code

Stack

Prof. Bodik CS 164 Fall 2004 22

Activation Records

• The information needed to manage one
procedure activation is called an activation
record (AR) or frame

• If procedure F calls G, then G’s activation
record contains a mix of info about F and G.

Prof. Bodik CS 164 Fall 2004 23

What is in G’s AR when F calls G?

• F is “suspended” until G completes, at which
point F resumes. G’s AR contains information
needed to resume execution of F.

• G’s AR may also contain:
– G’s return value (needed by F)
– Actual parameters to G (supplied by F)
– Space for G’s local variables

Prof. Bodik CS 164 Fall 2004 24

The Contents of a Typical AR for G

• Space for G’s return value
• Actual parameters
• Pointer to the previous activation record

– The control link; points to AR of caller of G
• Machine status prior to calling G

– Contents of registers & program counter
– Local variables

• Other temporary values

5

Prof. Bodik CS 164 Fall 2004 25

Example 2, Revisited

class Main {
int g() { return 1; }
int f(int x) {

if (x == 0) { return g(); }
else { return f(x - 1); (**) }

}
void main() { f(3); (*) }

}

AR for f:

return address
control link
argument
result

Prof. Bodik CS 164 Fall 2004 26

Stack After Two Calls to f

Main

(**)

2
(result)f
(*)

3
(result)f

Prof. Bodik CS 164 Fall 2004 27

Notes

• Main has no argument or local variables and its
result is never used; its AR is uninteresting

• (*) and (**) are return addresses of the
invocations of f
– The return address is where execution resumes

after a procedure call finishes

• This is only one of many possible AR designs
– Would also work for C, Pascal, FORTRAN, etc.

Prof. Bodik CS 164 Fall 2004 28

The Main Point

The compiler must determine, at compile-time,
the layout of activation records and generate
code that correctly accesses locations in the

activation record

Thus, the AR layout and the code generator
must be designed together!

Prof. Bodik CS 164 Fall 2004 29

Example

The picture shows the state after the call to
2nd invocation of f returns

Main

(**)

2
1f
(*)

3
(result)f

Prof. Bodik CS 164 Fall 2004 30

Discussion

• The advantage of placing the return value 1st
in a frame is that the caller can find it at a
fixed offset from its own frame

• There is nothing magic about this organization
– Can rearrange order of frame elements
– Can divide caller/callee responsibilities differently
– An organization is better if it improves execution

speed or simplifies code generation

6

Prof. Bodik CS 164 Fall 2004 31

Discussion (Cont.)

• Real compilers hold as much of the frame as
possible in registers
– Especially the method result and arguments

Prof. Bodik CS 164 Fall 2004 32

Globals

• All references to a global variable point to the
same object
– Can’t store a global in an activation record

• Globals are assigned a fixed address once
– Variables with fixed address are “statically

allocated”
• Depending on the language, there may be

other statically allocated values

Prof. Bodik CS 164 Fall 2004 33

Memory Layout with Static Data

Low Address

High Address

Memory

Code

Stack

Static Data

Prof. Bodik CS 164 Fall 2004 34

Heap Storage

• A value that outlives the procedure that
creates it cannot be kept in the AR

•
Bar foo() { return new Bar }

The Bar value must survive deallocation of foo’s AR

• Languages with dynamically allocated data use
a heap to store dynamic data

Prof. Bodik CS 164 Fall 2004 35

Notes

• The code area contains object code
– For most languages, fixed size and read only

• The static area contains data (not code) with
fixed addresses (e.g., global data)
– Fixed size, may be readable or writable

• The stack contains an AR for each currently
active procedure
– Each AR usually fixed size, contains locals

• Heap contains all other data
– In C, heap is managed by malloc and free

Prof. Bodik CS 164 Fall 2004 36

Notes (Cont.)

• Both the heap and the stack grow

• Must take care that they don’t grow into each
other

• Solution: start heap and stack at opposite
ends of memory and let the grow towards each
other

7

Prof. Bodik CS 164 Fall 2004 37

Memory Layout with Heap

Low Address

High Address

Memory

Code

Stack

Static Data

Heap

Prof. Bodik CS 164 Fall 2004 38

Data Layout

• Low-level details of machine architecture are
important in laying out data for correct code
and maximum performance

• Chief among these concerns is alignment

Prof. Bodik CS 164 Fall 2004 39

Alignment

• Most modern machines are (still) 32 bit
– 8 bits in a byte
– 4 bytes in a word
– Machines are either byte or word addressable

• Data is word aligned if it begins at a word
boundary

• Most machines have some alignment
restrictions
– Or performance penalties for poor alignment

Prof. Bodik CS 164 Fall 2004 40

Alignment (Cont.)

• Example: A string
“Hello”

Takes 5 characters (without a terminating \0)

• To word align next datum, add 3 “padding”
characters to the string

• The padding is not part of the string, it’s just
unused memory

