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Run-time organization
Lecture 12
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Status

• We have covered the front-end phases
– Lexical analysis
– Parsing
– Semantic analysis

• Next are the back-end phases
– Optimization
– Code generation

• We’ll do code generation first . . .
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Run-time environments

• Before discussing code generation, we need to 
understand what we are trying to generate

• There are a number of standard techniques 
for structuring executable code that are 
widely used
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Outline

• Management of run-time resources

• Correspondence between static (compile-time) 
and dynamic (run-time) structures

• Storage organization
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Run-time Resources

• Execution of a program is initially under the 
control of the operating system

• When a program is invoked:
– The OS allocates space for the program
– The code is loaded into part of the space
– The OS jumps to the entry point (i.e., “main”)
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Memory Layout

Low Address

High Address

Memory

Code

Other Space
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Notes

• By tradition, pictures of machine organization 
have:
– Low address at the top
– High address at the bottom
– Lines delimiting areas for different kinds of data

• These pictures are simplifications
– E.g., not all memory need be contiguous
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What is Other Space?

• Holds all data for the program
• Other Space = Data Space

• Compiler is responsible for:
– Generating code
– Orchestrating use of the data area
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Code Generation Goals

• Two goals:
– Correctness
– Speed

• Most complications in code generation come 
from trying to be fast as well as correct
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Assumptions about Execution

1. Execution is sequential; control moves from 
one point in a program to another in a well-
defined order

2. When a procedure is called, control 
eventually returns to the point immediately 
after the call

Do these assumptions always hold?
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Activations

• An invocation of procedure P is an activation 
of P

• The lifetime of an activation of P is
– All the steps to execute P
– Including all the steps in procedures P calls
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Lifetimes of Variables

• The lifetime of a variable x is the portion of 
execution in which x is defined

• Note that
– Lifetime is a dynamic (run-time) concept
– Scope is a static concept
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Activation Trees

• Assumption (2) requires that when P calls Q, 
then Q returns before P does

• Lifetimes of procedure activations are 
properly nested

• Activation lifetimes can be depicted as a tree
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Example

class Main {
int g() { return 1; }
int f() {return g(); }
void main() { g(); f(); }

}
Main

fg

g
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Example 2

class Main {
int g() { return 1; }
int f(int x) { 

if (x == 0) { return g(); }
else { return f(x - 1); } 

}
void main() { f(3); }

}

What is the activation tree for this example?
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Notes

• The activation tree depends on run-time 
behavior

• The activation tree may be different for 
every program input

• Since activations are properly nested, a stack 
can track currently active procedures
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Example

class Main {
int g() { return 1; }
int f() { return g(); }
void main() { g(); f(); }

}
Main Stack

Main
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Example

Main

g

Stack

Main
g

class Main {
int g() { return 1; }
int f() { return g(); }
void main() { g(); f(); }

}
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Example

Main

g f

Stack

Main
f

class Main {
int g() { return 1; }
int f() { return g(); }
void main() { g(); f(); }

}
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Example

Main

fg

g

Stack

Main
f
g

class Main {
int g() { return 1; }
int f() { return g(); }
void main() { g(); f(); }

}
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Revised Memory Layout

Low Address

High Address

Memory

Code

Stack
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Activation Records

• The information needed to manage one 
procedure activation is called an activation 
record (AR) or frame

• If procedure F calls G, then G’s activation 
record contains a mix of info about F and G.
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What is in G’s AR when F calls G?

• F is “suspended” until G completes, at which 
point F resumes.  G’s AR contains information 
needed to resume execution of F.

• G’s AR may also contain:
– G’s return value (needed by F)
– Actual parameters to G (supplied by F)
– Space for G’s local variables
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The Contents of a Typical AR for G

• Space for G’s return value
• Actual parameters
• Pointer to the previous activation record

– The control link; points to AR of caller of G
• Machine status prior to calling G

– Contents of registers & program  counter
– Local variables

• Other temporary values
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Example 2, Revisited

class Main {
int g() { return 1; }
int f(int x) { 

if (x == 0) { return g(); }
else { return f(x - 1); (**) } 

}
void main() { f(3); (*) }

} 

AR for f:

return address
control link
argument
result
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Stack After Two Calls to f

Main

(**)

2
(result)f
(*)

3
(result)f
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Notes

• Main has no argument or local variables and its 
result is never used; its AR is uninteresting

• (*) and (**) are return addresses of the 
invocations of f
– The return address is where execution resumes 

after a procedure call finishes

• This is only one of many possible AR designs
– Would also work for C, Pascal, FORTRAN, etc.
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The Main Point

The compiler must determine, at compile-time, 
the layout of activation records and generate 
code that correctly accesses locations in the 

activation record

Thus, the AR layout and the code generator 
must be designed together!
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Example

The picture shows the state after the call to 
2nd invocation of f returns

Main

(**)

2
1f
(*)

3
(result)f
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Discussion

• The advantage of placing the return value 1st 
in a frame is that the caller can find it at a 
fixed offset from its own frame

• There is nothing magic about this organization
– Can rearrange order of frame elements
– Can divide caller/callee responsibilities differently
– An organization is better if it improves execution 

speed or simplifies code generation
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Discussion (Cont.)

• Real compilers hold as much of the frame as 
possible in registers
– Especially the method result and arguments
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Globals

• All references to a global variable point to the 
same object
– Can’t store a global in an activation record

• Globals are assigned a fixed address once
– Variables with fixed address are “statically 

allocated”
• Depending on the language, there may be 

other statically allocated values
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Memory Layout with Static Data

Low Address

High Address

Memory

Code

Stack

Static Data
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Heap Storage

• A value that outlives the procedure that 
creates it cannot be kept in the AR

•
Bar foo() { return new Bar }

The Bar value must survive deallocation of foo’s AR

• Languages with dynamically allocated data use 
a heap to store dynamic data
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Notes

• The code area contains object code
– For most languages, fixed size and read only

• The static area contains data (not code) with 
fixed addresses (e.g., global data)
– Fixed size, may be readable or writable

• The stack contains an AR for each currently 
active procedure
– Each AR usually fixed size, contains locals

• Heap contains all other data
– In C, heap is managed by malloc and free
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Notes (Cont.)

• Both the heap and the stack grow

• Must take care that they don’t grow into each 
other

• Solution: start heap and stack at opposite 
ends of memory and let the grow towards each 
other
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Memory Layout with Heap

Low Address

High Address

Memory

Code

Stack

Static Data

Heap
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Data Layout

• Low-level details of machine architecture are 
important in laying out data for correct code 
and maximum performance

• Chief among these concerns is alignment
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Alignment

• Most modern machines are (still) 32 bit
– 8 bits in a byte
– 4 bytes in a word
– Machines are either byte or word addressable

• Data is word aligned if it begins at a word 
boundary

• Most machines have some alignment 
restrictions
– Or performance penalties for poor alignment
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Alignment (Cont.)

• Example: A string
“Hello”

Takes 5 characters (without a terminating \0)

• To word align next datum, add 3 “padding” 
characters to the string

• The padding is not part of the string, it’s just 
unused memory


