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Lecture Outline

+ Beyond compilers

- Looking at other issues in programming language
design and tools

- C
- Arrays
- Exploiting buffer overruns

+ Java
- Is type safety enough?
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Platitudes

+ Language design has influence on
- Safety
- Efficiency
- Security
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C Design Principles

Small language
*+ Maximum efficiency
+ Safety less important

+ Designed for the world in 1972
- Weak machines
- Trusted networks
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Arrays in C

char buffer[100];

Declares and allocates an array of 100 chars

o 1 2 99

L[| l

e ]00 *sizeof(char) — =—
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C Array Operations

char buf1[100], buf2[100];

Write:
buf1[0] = 'a;

Read:
return buf2[0];
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What's Wrong with this Picture?

int i;

for(i = 0; bufl[i]!="\Q’; i++) {
buf2[i] = bufl[i];

}

buf2[i] = "\0"
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Indexing Out of Bounds

The following are all legal C and may generate no
run-time errors

char buffer[100];
buffer[-1] = 'a’;

buffer[100] = 'a’;
buffer[100000] = '’
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Why?

+ Why does C allow out of bounds array
references?

- Proving at compile-time that all array references
are in bounds is very difficult (impossible in C)

- Checking at run-time that all array references are
in bounds is expensive
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Code Generation for Arrays

+ The C code:
bufi[i]=1. /* bufl has type int[]*/
+ The assembly code:

Regular € C with bounds checks Costly!

rl= &bufl: rl = &bufl;

r2 = load i; r2 = load i; ..

r3=r2*4; r3=r2*4; Finding the
if r3 <0 then error; array limits
r5 = load limit of bufl; Is non-trivial
if r3 >= r5 then error;

rd=rl+r3 rd=rl+r3

store r4, 1 store r4, 1
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C vs. Java

+ Carray reference typical case
- Offset calculation
- Memory operation (load or store)

+ Java array reference typical case
- Offset calculation
- Memory operation (load or store)
- Array bounds check
- Type compatibility check (for stores)
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Buffer Overruns

+ A buffer overrun writes past the end of an
array

+ Buffer usually refers o a C array of char
- But can be any array

+ So who's afraid of a buffer overrun?
- Cause a core dump
- Can damage data structures
- What else?
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Stack Smashing

Buffer overruns can alter the control flow of
your program!

char buffer[100]; /* stack allocated array */

o 1 2 99 return address

L1 | [ 1 |

100 *sizeof(char) ==
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An Overrun Vulnerability

void foo(char in[]) {
char buffer[100];
inti=0;
for(i = 0; in[i] 1= "\O'; i++)
{ buffer[i] = in[i]; }
buffer[i]="\0";
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An Interesting Idea

char in[104]={"",..,"", magic 4 chars}
foo(in), (**)
foo entry
o 1 2 99 return address
L1 11 [ [ e
st 100 *sizeof(char) ==
foo exit
o 1 2 99 return address
I I I I ] ] magic 4 chars

e ]00 *sizeof(char) =
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Discussion

+ 5o we can make foo jump wherever we like.
+ How is this possible?

+ Unanticipated interaction of two features:
- Unchecked array operations
- Stack-allocated arrays

+ Knowledge of frame layout allows prediction of where
array and return address are stored

- Note the "magic cast” from char's to an address
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The Rest of the Story

+ Say that foo is part of a network server and
the in originates in a received message
- Some remote user can make foo jump anywhere !

* But where is a "useful” place to jump?

- Idea: Jump to some code that gives you control of
the host system (e.g. code that spawns a shell)

* But where to put such code?

- Idea: Put the code in the same buffer and jump
therel
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The Plan

+ We'll make the code jump to the following
code:

+ InC: exec("/bin/sh");
+ Inassembly (pretend):

mov $a0, 15 ; load the syscall code for “exec”
mov $al, &Ldata ; load the command
syscall : make the system call

Ldata: .byte '/'/b'",i",n'//",s'/h',0 ; null-terminated
+ In machine code: 0x20, 0x42, 0x00, ...
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The Plan

char in[104] = { 104 magic chars}
foo(in);

foo exit
o 1 2 99 return address
[ oxz0, 0x42 0x00, . [

+ The last 4 bytes in “in" must equal the start address of
buffer
- Its position might depend on many factors !
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Guess the Location of the Injected Code

+ Trial & error: gives you a ballpark

+ Then pad the injected code with NOP
- E.g. add $0, $1, 0x2020

+ stores result in $0 which is hardwired to O anyway
+ Encoded as 0x20202020

foo exit
o 1 2 99  return address
I 0x20, ..., 0x20, Ox20, Ox42, 0x00, ... l I

The bad code

- Works even with an approximate address of buffer !
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More Problems

+ We do not know exactly where the return address is
- Depends on how the compiler chose to allocate variables in
the stack frame
+ Solution: pad the buffer at the end with many copies
of the "magic return address X"

foo exit
o 1 2

0x20, ..., 0x20, 0x20, 0x42, 0x00, ..., X, X, X, X, ] X, X ..

return
The bad code address
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Even More Problems

The most common way to copy the bad code ina
stack buffer is using string functions: strcpy,
strcat, etc.

This means that buf cannot contain 0x00 bytes
- Why?

Solution:

- Rewrite the code carefully

- Instead of “addiu $4,$0,0x0015 (code 0x20400015)
- Use "addiu $4,$0,0x1126; subiu $4, $4, Ox1111"
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The State of C Programming

+ Buffer overruns are common
- Programmers must do their own bounds checking
- Easy to forget or be off-by-one or more
- Program still appears to work correctly

« InCw.r.t. to buffer overruns

- Easy to do the wrong thing
- Hard to do the right thing
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The State of Hacking

+ Buffer overruns are the attack of choice
- 40-50% of new vulnerabilities are buffer overrun
exploits
- Many recent attacks of this flavor: Code Red,
Nimda, MS-SQL server (Slammer)

+ Highly automated toolkits available to exploit
known buffer overruns
- Search for "buffer overruns” yields > 25,000 hits
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The Sad Reality

+ Even well-known buffer overruns are still
widely exploited

- Hard to get people to upgrade millions of vulnerable
machines

+ We assume that there are many more unknown
buffer overrun vulnerabilities
- At least unknown to the good guys
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Can Dataflow Analysis Help?

+ Idea: for each variable used as an array index,
calculate its possible range of values at each
program point (eg. [0,99])

- If we have array sizes, can check if bounds are
respected

+ Problem: infinite number of dataflow facts!
- Analysis of loops probably won't terminate

+ An efficient approximation gives too many
false warnings

+ Other compiler techniques more successful
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What about Java?

+ Type safety prevents incorrectly-typed
pointers
- B b = new A() disallowed unless A extends B
- Array-bounds checks prevent buffer
overflows

+ Together, these checks prevent execution of
arbitrary user code...

Unless the computer breaks!
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Memory Errors

+ A flip of some bit in memory

- Can be caused by cosmic ray, or deliberately
through radiation (heat)

flip bit 3
‘0)(4408‘T—- 0x4400
N 0x4404
N 0x4408
Exploitable! Oxa40C
0x4410
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Overview of Attack

+ Step 1: use memory error to obtain two
pointers p and q, such that p==qand pand q
have incompatible, specially-designed static
types
- Normally prevented by Java type system

+ Step 2: use p and q from Step 1 to write
values into arbitrary memory addresses
- Fill a block of memory with desired machine code
- Overwrite dispatch table entry to point to block
- Do the virtual call corresponding to modified entry
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Special Classes For Attack

class A { class B {
Aal; Aal;
A a2; A a2;
Bb; // for Step 1 A a3;
A a4; A a4;
int i; // for address A ab;

// in Step 2 }
}

Assume 3-word object header
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Step 1 (Exploiting The Memory Error)

0x6000
0X600A .

0x6010 B orig; .
0x6014 A tmpl = orig.al;
0x6018 B bad = tmpl.b;
0x601A [ T
0x6020 flip bit 5 in orig.al
0x602A

0x6030

0x6034 Now bad points to an A object!
0x6038

0x603A
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Step 2 (Writing arbitrary memory)

A p: Bgq; // from Step 1, p == q; assume both point to an A
int offset = 8 * 4; // offset of i field in A
void write(int address, int value) {

p.i = address - offset;

q.a5.i = value; // q.ab is an integer treated as a pointer

}

Example: write 337 to address 0x4020
p

—1 A header] 0x4000

B

A g.a5.i[337 ] 0x4020
gpa%|0x4000
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Putting It All Together

A p; // pointer to single A object + Heap has one A object,
while (frue) { any B objects
for (int i = 0; i < b_objs.length; i++) { m Y J .
B orig = b_objsli]; + All fields of type A point
// Step 1, really check all fields to single objecf, to
A tmpl = orig.al; . -
Bq = tmpLb; increase probability of
// See if we succeeded success
Object ol = p; Object 02 = q;
if (o1 == 02) {

writeCode(p,q); // uses write from Step 2
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Results (Govindavajhala and Appel)

+ With software-injected memory errors, took
over both IBM and Sun JVMs with 70%
success rate

+ Equally successful through heating DRAM with
a lamp

+ Defense: memory with error-correcting codes
- ECC often not included to cut costs

+ Most serious domain of attack is smart cards
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Summary

* Programming language knowledge useful
beyond compilers

- Helps programmers understand the exact behavior
of their code

- Compiler techniques can help to address other
problems like security (big research area)

+ Safety and security are hard
- Assumptions must be explicit
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