
Prof. Bodik CS 164 Lecture 26 1

Language Security

Lecture 26

Prof. Bodik CS 164 Lecture 26 2

Lecture Outline

• Beyond compilers
– Looking at other issues in programming language

design and tools

• C
– Arrays
– Exploiting buffer overruns

• Java
– Is type safety enough?

Prof. Bodik CS 164 Lecture 26 3

Platitudes

• Language design has influence on
– Safety
– Efficiency
– Security

Prof. Bodik CS 164 Lecture 26 4

C Design Principles

• Small language
• Maximum efficiency
• Safety less important

• Designed for the world in 1972
– Weak machines
– Trusted networks

Prof. Bodik CS 164 Lecture 26 5

Arrays in C

char buffer[100];

Declares and allocates an array of 100 chars

100 *sizeof(char)

0 1 2 99

Prof. Bodik CS 164 Lecture 26 6

C Array Operations

char buf1[100], buf2[100];

Write:
buf1[0] = ‘a’;

Read:
return buf2[0];

Prof. Bodik CS 164 Lecture 26 7

What’s Wrong with this Picture?

int i;
for(i = 0; buf1[i] != ‘\0’; i++) {

buf2[i] = buf1[i];
}
buf2[i] = ‘\0’;

Prof. Bodik CS 164 Lecture 26 8

Indexing Out of Bounds

The following are all legal C and may generate no
run-time errors

char buffer[100];

buffer[-1] = ‘a’;
buffer[100] = ‘a’;
buffer[100000] = ‘a’;

Prof. Bodik CS 164 Lecture 26 9

Why?

• Why does C allow out of bounds array
references?

– Proving at compile-time that all array references
are in bounds is very difficult (impossible in C)

– Checking at run-time that all array references are
in bounds is expensive

Prof. Bodik CS 164 Lecture 26 10

Code Generation for Arrays

• The C code:
buf1[i] = 1; /* buf1 has type int[] */

C with bounds checks
r1 = &buf1;
r2 = load i;
r3 = r2 * 4;
if r3 < 0 then error;
r5 = load limit of buf1;
if r3 >= r5 then error;
r4 = r1 + r3
store r4, 1

Regular C
r1 = &buf1;
r2 = load i;
r3 = r2 * 4;

r4 = r1 + r3
store r4, 1

• The assembly code:
Costly!

Finding the
array limits
is non-trivial

Prof. Bodik CS 164 Lecture 26 11

C vs. Java

• C array reference typical case
– Offset calculation
– Memory operation (load or store)

• Java array reference typical case
– Offset calculation
– Memory operation (load or store)
– Array bounds check
– Type compatibility check (for stores)

Prof. Bodik CS 164 Lecture 26 12

Buffer Overruns

• A buffer overrun writes past the end of an
array

• Buffer usually refers to a C array of char
– But can be any array

• So who’s afraid of a buffer overrun?
– Cause a core dump
– Can damage data structures
– What else?

Prof. Bodik CS 164 Lecture 26 13

Stack Smashing

Buffer overruns can alter the control flow of
your program!

char buffer[100]; /* stack allocated array */

100 *sizeof(char)

0 1 2 99 return address

Prof. Bodik CS 164 Lecture 26 14

An Overrun Vulnerability

void foo(char in[]) {
char buffer[100];
int i = 0;
for(i = 0; in[i] != ‘\0’; i++)

{ buffer[i] = in[i]; }
buffer[i] = ‘\0’;

}

Prof. Bodik CS 164 Lecture 26 15

An Interesting Idea

char in[104] = { ‘ ‘,…,’ ‘, magic 4 chars }
foo(in); (**)

100 *sizeof(char)

0 1 2 99 return address
foo entry

(**)

100 *sizeof(char)

0 1 2 99 return address
foo exit

magic 4 chars

Prof. Bodik CS 164 Lecture 26 16

Discussion

• So we can make foo jump wherever we like.

• How is this possible?

• Unanticipated interaction of two features:
– Unchecked array operations
– Stack-allocated arrays

• Knowledge of frame layout allows prediction of where
array and return address are stored

– Note the “magic cast” from char’s to an address

Prof. Bodik CS 164 Lecture 26 17

The Rest of the Story

• Say that foo is part of a network server and
the in originates in a received message
– Some remote user can make foo jump anywhere !

• But where is a “useful” place to jump?
– Idea: Jump to some code that gives you control of

the host system (e.g. code that spawns a shell)
• But where to put such code?

– Idea: Put the code in the same buffer and jump
there!

Prof. Bodik CS 164 Lecture 26 18

The Plan

• We’ll make the code jump to the following
code:

• In C: exec(“/bin/sh”);
• In assembly (pretend):

mov $a0, 15 ; load the syscall code for “exec”
mov $a1, &Ldata ; load the command
syscall ; make the system call

Ldata: .byte ‘/’,’b’,’i’,’n’,’/’,’s’,’h’,0 ; null-terminated
• In machine code: 0x20, 0x42, 0x00, …

Prof. Bodik CS 164 Lecture 26 19

The Plan

char in[104] = { 104 magic chars }
foo(in);

0 1 2 99 return address
foo exit

0x20, 0x42, 0x00, …

• The last 4 bytes in “in” must equal the start address of
buffer

• Its position might depend on many factors !
Prof. Bodik CS 164 Lecture 26 20

Guess the Location of the Injected Code

• Trial & error: gives you a ballpark
• Then pad the injected code with NOP

– E.g. add $0, $1, 0x2020
• stores result in $0 which is hardwired to 0 anyway
• Encoded as 0x20202020

0 1 2 99 return address
foo exit

0x20, …, 0x20, 0x20, 0x42, 0x00, …

• Works even with an approximate address of buffer !
The bad code

Prof. Bodik CS 164 Lecture 26 21

More Problems

• We do not know exactly where the return address is
– Depends on how the compiler chose to allocate variables in

the stack frame
• Solution: pad the buffer at the end with many copies

of the “magic return address X”

0 1 2 99

return
address

foo exit

0x20, …, 0x20, 0x20, 0x42, 0x00, …, X, X, X, X, …, X , X, …

The bad code

Prof. Bodik CS 164 Lecture 26 22

Even More Problems

• The most common way to copy the bad code in a
stack buffer is using string functions: strcpy,
strcat, etc.

• This means that buf cannot contain 0x00 bytes
– Why?

• Solution:
– Rewrite the code carefully
– Instead of “addiu $4,$0,0x0015 (code 0x20400015)
– Use “addiu $4,$0,0x1126; subiu $4, $4, 0x1111”

Prof. Bodik CS 164 Lecture 26 23

The State of C Programming

• Buffer overruns are common
– Programmers must do their own bounds checking
– Easy to forget or be off-by-one or more
– Program still appears to work correctly

• In C w.r.t. to buffer overruns
– Easy to do the wrong thing
– Hard to do the right thing

Prof. Bodik CS 164 Lecture 26 24

The State of Hacking

• Buffer overruns are the attack of choice
– 40-50% of new vulnerabilities are buffer overrun

exploits
– Many recent attacks of this flavor: Code Red,

Nimda, MS-SQL server (Slammer)

• Highly automated toolkits available to exploit
known buffer overruns
– Search for “buffer overruns” yields > 25,000 hits

Prof. Bodik CS 164 Lecture 26 25

The Sad Reality

• Even well-known buffer overruns are still
widely exploited
– Hard to get people to upgrade millions of vulnerable

machines

• We assume that there are many more unknown
buffer overrun vulnerabilities
– At least unknown to the good guys

Prof. Bodik CS 164 Lecture 26 26

Can Dataflow Analysis Help?

• Idea: for each variable used as an array index,
calculate its possible range of values at each
program point (eg. [0,99])
– If we have array sizes, can check if bounds are

respected
• Problem: infinite number of dataflow facts!

– Analysis of loops probably won’t terminate
• An efficient approximation gives too many

false warnings
• Other compiler techniques more successful

Prof. Bodik CS 164 Lecture 26 27

What about Java?

• Type safety prevents incorrectly-typed
pointers
– B b = new A() disallowed unless A extends B

• Array-bounds checks prevent buffer
overflows

• Together, these checks prevent execution of
arbitrary user code…

Unless the computer breaks!

Prof. Bodik CS 164 Lecture 26 28

Memory Errors

• A flip of some bit in memory
– Can be caused by cosmic ray, or deliberately

through radiation (heat)

0x4400 0x4400

0x4404

0x4408

0x440C

0x4410

flip bit 3
0x4408

Exploitable!

Prof. Bodik CS 164 Lecture 26 29

Overview of Attack

• Step 1: use memory error to obtain two
pointers p and q, such that p == q and p and q
have incompatible, specially-designed static
types
– Normally prevented by Java type system

• Step 2: use p and q from Step 1 to write
values into arbitrary memory addresses
– Fill a block of memory with desired machine code
– Overwrite dispatch table entry to point to block
– Do the virtual call corresponding to modified entry

Prof. Bodik CS 164 Lecture 26 30

Special Classes For Attack

class A {
A a1;
A a2;
B b; // for Step 1
A a4;
int i; // for address

// in Step 2
}

class B {
A a1;
A a2;
A a3;
A a4;
A a5;

}

Assume 3-word object header

Prof. Bodik CS 164 Lecture 26 31

Step 1 (Exploiting The Memory Error)

A header
A
A
B
A

int
B header

A
A
A
A

A

0x6000
0x600A
0x6010
0x6014
0x6018
0x601A
0x6020
0x602A
0x6030
0x6034
0x6038
0x603A

B orig;
A tmp1 = orig.a1;
B bad = tmp1.b;

orig

tmp1

bad

flip bit 5 in orig.a1

tmp1

bad

Now bad points to an A object!

Prof. Bodik CS 164 Lecture 26 32

Step 2 (Writing arbitrary memory)

A p; B q; // from Step 1, p == q; assume both point to an A
int offset = 8 * 4; // offset of i field in A
void write(int address, int value) {

p.i = address – offset;
q.a5.i = value; // q.a5 is an integer treated as a pointer

}
Example: write 337 to address 0x4020

A header
A
A
B
A

0x4000

p

q

0x4020

0x4004
0x4000

337
p.iq.a5

…

q.a5.i

Prof. Bodik CS 164 Lecture 26 33

Putting It All Together

A p; // pointer to single A object
while (true) {

for (int i = 0; i < b_objs.length; i++) {
B orig = b_objs[i];
// Step 1, really check all fields
A tmp1 = orig.a1;
B q = tmp1.b;
// See if we succeeded
Object o1 = p; Object o2 = q;
if (o1 == o2) {

writeCode(p,q); // uses write from Step 2
}

}
}

• Heap has one A object,
many B objects

• All fields of type A point
to single object, to
increase probability of
success

Prof. Bodik CS 164 Lecture 26 34

Results (Govindavajhala and Appel)

• With software-injected memory errors, took
over both IBM and Sun JVMs with 70%
success rate

• Equally successful through heating DRAM with
a lamp

• Defense: memory with error-correcting codes
– ECC often not included to cut costs

• Most serious domain of attack is smart cards

Prof. Bodik CS 164 Lecture 26 35

Summary

• Programming language knowledge useful
beyond compilers
– Helps programmers understand the exact behavior

of their code
– Compiler techniques can help to address other

problems like security (big research area)
• Safety and security are hard

– Assumptions must be explicit

