Language Security

Lecture 26

Prof. Bodik CS 164 Lecture 26

Lecture Outline

+ Beyond compilers

- Looking at other issues in programming language
design and tools

- C
- Arrays
- Exploiting buffer overruns

+ Java
- Is type safety enough?

Prof. Bodik CS 164 Lecture 26 2

Platitudes

+ Language design has influence on
- Safety
- Efficiency
- Security

Prof. Bodik CS 164 Lecture 26

C Design Principles

Small language
*+ Maximum efficiency
+ Safety less important

+ Designed for the world in 1972
- Weak machines
- Trusted networks

Prof. Bodik CS 164 Lecture 26 4

Arrays in C

char buffer[100];

Declares and allocates an array of 100 chars

o 1 2 99

L[| l

e]00 *sizeof(char) — =—

Prof. Bodik CS 164 Lecture 26 5

C Array Operations

char buf1[100], buf2[100];

Write:
buf1[0] = 'a;

Read:
return buf2[0];

Prof. Bodik CS 164 Lecture 26 6

What's Wrong with this Picture?

int i;

for(i = 0; bufl[i]!="\Q’; i++) {
buf2[i] = bufl[i];

}

buf2[i] = "\0"

Prof. Bodik CS 164 Lecture 26 7

Indexing Out of Bounds

The following are all legal C and may generate no
run-time errors

char buffer[100];
buffer[-1] = 'a’;

buffer[100] = 'a’;
buffer[100000] = '’

Prof. Bodik CS 164 Lecture 26 8

Why?

+ Why does C allow out of bounds array
references?

- Proving at compile-time that all array references
are in bounds is very difficult (impossible in C)

- Checking at run-time that all array references are
in bounds is expensive

Prof. Bodik CS 164 Lecture 26 9

Code Generation for Arrays

+ The C code:
bufi[i]=1. /* bufl has type int[]*/
+ The assembly code:

Regular € C with bounds checks Costly!

rl= &bufl: rl = &bufl;

r2 = load i; r2 = load i; ..

r3=r2*4; r3=r2*4; Finding the
if r3 <0 then error; array limits
r5 = load limit of bufl; Is non-trivial
if r3 >= r5 then error;

rd=rl+r3 rd=rl+r3

store r4, 1 store r4, 1

Prof. Bodik CS 164 Lecture 26 10

C vs. Java

+ Carray reference typical case
- Offset calculation
- Memory operation (load or store)

+ Java array reference typical case
- Offset calculation
- Memory operation (load or store)
- Array bounds check
- Type compatibility check (for stores)

Prof. Bodik CS 164 Lecture 26 11

Buffer Overruns

+ A buffer overrun writes past the end of an
array

+ Buffer usually refers o a C array of char
- But can be any array

+ So who's afraid of a buffer overrun?
- Cause a core dump
- Can damage data structures
- What else?

Prof. Bodik CS 164 Lecture 26 12

Stack Smashing

Buffer overruns can alter the control flow of
your program!

char buffer[100]; /* stack allocated array */

o 1 2 99 return address

L1 | [1 |

100 *sizeof(char) ==

Prof. Bodik CS 164 Lecture 26 13

An Overrun Vulnerability

void foo(char in[]) {
char buffer[100];
inti=0;
for(i = 0; in[i] 1= "\O'; i++)
{ buffer[i] = in[i]; }
buffer[i]="\0";

Prof. Bodik CS 164 Lecture 26 14

An Interesting Idea

char in[104]={"",..,"", magic 4 chars}
foo(in), (**)
foo entry
o 1 2 99 return address
L1 11 [[e
st 100 *sizeof(char) ==
foo exit
o 1 2 99 return address
I I I I]] magic 4 chars

e]00 *sizeof(char) =
Prof. Bodik CS 164 Lecture 26 15

Discussion

+ 5o we can make foo jump wherever we like.
+ How is this possible?

+ Unanticipated interaction of two features:
- Unchecked array operations
- Stack-allocated arrays

+ Knowledge of frame layout allows prediction of where
array and return address are stored

- Note the "magic cast” from char's to an address
Prof. Bodik CS 164 Lecture 26 16

The Rest of the Story

+ Say that foo is part of a network server and
the in originates in a received message
- Some remote user can make foo jump anywhere !

* But where is a "useful” place to jump?

- Idea: Jump to some code that gives you control of
the host system (e.g. code that spawns a shell)

* But where to put such code?

- Idea: Put the code in the same buffer and jump
therel

Prof. Bodik CS 164 Lecture 26 17

The Plan

+ We'll make the code jump to the following
code:

+ InC: exec("/bin/sh");
+ Inassembly (pretend):

mov $a0, 15 ; load the syscall code for “exec”
mov $al, &Ldata ; load the command
syscall : make the system call

Ldata: .byte '/'/b'",i",n'//",s'/h',0 ; null-terminated
+ In machine code: 0x20, 0x42, 0x00, ...

Prof. Bodik CS 164 Lecture 26 18

The Plan

char in[104] = { 104 magic chars}
foo(in);

foo exit
o 1 2 99 return address
[oxz0, 0x42 0x00, . [

+ The last 4 bytes in “in" must equal the start address of
buffer
- Its position might depend on many factors !

Prof. Bodik CS 164 Lecture 26 19

Guess the Location of the Injected Code

+ Trial & error: gives you a ballpark

+ Then pad the injected code with NOP
- E.g. add $0, $1, 0x2020

+ stores result in $0 which is hardwired to O anyway
+ Encoded as 0x20202020

foo exit
o 1 2 99 return address
I 0x20, ..., 0x20, Ox20, Ox42, 0x00, ... l I

The bad code

- Works even with an approximate address of buffer !

Prof. Bodik CS 164 Lecture 26 20

More Problems

+ We do not know exactly where the return address is
- Depends on how the compiler chose to allocate variables in
the stack frame
+ Solution: pad the buffer at the end with many copies
of the "magic return address X"

foo exit
o 1 2

0x20, ..., 0x20, 0x20, 0x42, 0x00, ..., X, X, X, X,] X, X ..

return
The bad code address

Prof. Bodik CS 164 Lecture 26 21

Even More Problems

The most common way to copy the bad code ina
stack buffer is using string functions: strcpy,
strcat, etc.

This means that buf cannot contain 0x00 bytes
- Why?

Solution:

- Rewrite the code carefully

- Instead of “addiu $4,$0,0x0015 (code 0x20400015)
- Use "addiu $4,$0,0x1126; subiu $4, $4, Ox1111"

Prof. Bodik CS 164 Lecture 26 22

The State of C Programming

+ Buffer overruns are common
- Programmers must do their own bounds checking
- Easy to forget or be off-by-one or more
- Program still appears to work correctly

« InCw.r.t. to buffer overruns

- Easy to do the wrong thing
- Hard to do the right thing

Prof. Bodik CS 164 Lecture 26 23

The State of Hacking

+ Buffer overruns are the attack of choice
- 40-50% of new vulnerabilities are buffer overrun
exploits
- Many recent attacks of this flavor: Code Red,
Nimda, MS-SQL server (Slammer)

+ Highly automated toolkits available to exploit
known buffer overruns
- Search for "buffer overruns” yields > 25,000 hits

Prof. Bodik CS 164 Lecture 26 24

The Sad Reality

+ Even well-known buffer overruns are still
widely exploited

- Hard to get people to upgrade millions of vulnerable
machines

+ We assume that there are many more unknown
buffer overrun vulnerabilities
- At least unknown to the good guys

Prof. Bodik CS 164 Lecture 26 25

Can Dataflow Analysis Help?

+ Idea: for each variable used as an array index,
calculate its possible range of values at each
program point (eg. [0,99])

- If we have array sizes, can check if bounds are
respected

+ Problem: infinite number of dataflow facts!
- Analysis of loops probably won't terminate

+ An efficient approximation gives too many
false warnings

+ Other compiler techniques more successful

Prof. Bodik CS 164 Lecture 26 26

What about Java?

+ Type safety prevents incorrectly-typed
pointers
- B b = new A() disallowed unless A extends B
- Array-bounds checks prevent buffer
overflows

+ Together, these checks prevent execution of
arbitrary user code...

Unless the computer breaks!

Prof. Bodik CS 164 Lecture 26 27

Memory Errors

+ A flip of some bit in memory

- Can be caused by cosmic ray, or deliberately
through radiation (heat)

flip bit 3
‘0)(4408‘T—- 0x4400
N 0x4404
N 0x4408
Exploitable! Oxa40C
0x4410

Prof. Bodik CS 164 Lecture 26 28

Overview of Attack

+ Step 1: use memory error to obtain two
pointers p and q, such that p==qand pand q
have incompatible, specially-designed static
types
- Normally prevented by Java type system

+ Step 2: use p and q from Step 1 to write
values into arbitrary memory addresses
- Fill a block of memory with desired machine code
- Overwrite dispatch table entry to point to block
- Do the virtual call corresponding to modified entry

Prof. Bodik CS 164 Lecture 26 29

Special Classes For Attack

class A { class B {
Aal; Aal;
A a2; A a2;
Bb; // for Step 1 A a3;
A a4; A a4;
int i; // for address A ab;

// in Step 2 }
}

Assume 3-word object header

Prof. Bodik CS 164 Lecture 26 30

Step 1 (Exploiting The Memory Error)

0x6000
0X600A .

0x6010 B orig; .
0x6014 A tmpl = orig.al;
0x6018 B bad = tmpl.b;
0x601A [T
0x6020 flip bit 5 in orig.al
0x602A

0x6030

0x6034 Now bad points to an A object!
0x6038

0x603A

Prof. Bodik CS 164 Lecture 26 31

Step 2 (Writing arbitrary memory)

A p: Bgq; // from Step 1, p == q; assume both point to an A
int offset = 8 * 4; // offset of i field in A
void write(int address, int value) {

p.i = address - offset;

q.a5.i = value; // q.ab is an integer treated as a pointer

}

Example: write 337 to address 0x4020
p

—1 A header] 0x4000

B

A g.a5.i[337] 0x4020
gpa%|0x4000
Prof. Bodik CS 164 Lecture 26 32

Putting It All Together

A p; // pointer to single A object + Heap has one A object,
while (frue) { any B objects
for (int i = 0; i < b_objs.length; i++) { m Y J .
B orig = b_objsli]; + All fields of type A point
// Step 1, really check all fields to single objecf, to
A tmpl = orig.al; . -
Bq = tmpLb; increase probability of
// See if we succeeded success
Object ol = p; Object 02 = q;
if (o1 == 02) {

writeCode(p,q); // uses write from Step 2

Prof. Bodik CS 164 Lecture 26 33

Results (Govindavajhala and Appel)

+ With software-injected memory errors, took
over both IBM and Sun JVMs with 70%
success rate

+ Equally successful through heating DRAM with
a lamp

+ Defense: memory with error-correcting codes
- ECC often not included to cut costs

+ Most serious domain of attack is smart cards

Prof. Bodik CS 164 Lecture 26 34

Summary

* Programming language knowledge useful
beyond compilers

- Helps programmers understand the exact behavior
of their code

- Compiler techniques can help to address other
problems like security (big research area)

+ Safety and security are hard
- Assumptions must be explicit

Prof. Bodik CS 164 Lecture 26 35

