
Ras Bodik CS 164 (Fall 2004) 1

A Small GUI Language

Ras Bodik CS 164 (Fall 2004)
2

Administrivia

• PA5:
– due Thu Dec 9

– if you’ve ran out of late days, you can still submit late,
with a penalty of 10%/day

– submit not later than Sunday Dec 12

• PA6:
– due Monday, Dec 13

– your test cases may be selected as benchmarks to declare the
winner

– winner to be declared at the final exam

Ras Bodik CS 164 (Fall 2004)
3

Lecture Outline

• Follow-up to Dave’s lecture
– a do-it-yourself language for GUI programming

– design and implementation

– from Fall 2003 final exam (design was given)

– see the exam for more details on this language

• HKN Course Survey
– with a few curious questions from me

Ras Bodik CS 164 (Fall 2004)
4

The problem

• Problem:
– we have a GUI library
– happy with its functionality
– but client programs are too tedious to write
– clients contain repetitive code opportunity!

• Solution:
– design a small language
– a declarative language (state what, not how)
– a simple, convenient layer over a complicated library
– client programs will be concise, easy to develop

Ras Bodik CS 164 (Fall 2004)
5

What is GUI programming?

1. creating windows, menus

2. linking them to actions in client code

• our example language will take care of only the first

Ras Bodik CS 164 (Fall 2004)
6

A hypothetical GUI library

• Key elements:
– widgets

• label (text)

• dialog box (for entering strings)

• button (such as Cancel)

• selection button (select zero or more options)

• radio buttons (select exactly one of multiple options)

– windows
• contain widgets and (nested) windows

• content organized in rows

• an optional window title

Ras Bodik CS 164 (Fall 2004)
7

An example window

Two windows nested in their parent window.
The left window contains selection buttons;
the right window contains radio buttons.

three widgets: a text, a dialog box, and a button.
Top-level window.

Ras Bodik CS 164 (Fall 2004)
8

Client code for the example window

// the constructor's argument is always the parent window;
Window top = new Window(null); // top-level window is parentless
top.setTitle(``Find'');

// The first row of the top-level window

Text t = new Text(top);
t.setPosition(0,0);
// sets position within the parent window, given as x,y coord.
// position is relative to top left corner of parent window
// values are in percent of the parent size
t.setLabel("Find what:");

Dialog d = new Dialog(top);
d.setPosition(20,0);
d.setWidth(18*someConstant); // there are 18 dashes in <--...-->

Button f = new Button(top);
f.setType(REGULAR_BUTTON);
f.setPosition(80,0);
f.setLabel("Find Next");

// Second row of the top level window
// Left nested window
Window w1 = new Window(top);
w1.setPosition(0,50);

Selection s1 = new Selection(w1);
s1.setPosition(0,0);
s1.setLabel("Match whole word only");

Selection s2 = new Selection(w1);
s2.setPosition(0,50);
s2.setLabel("Match case");
s2.setSelected(true); // this selection is checked

// Right nested window
Window w2 = new Window(top);
w2.setPosition(45,50);
w2.setTitle("Direction");
w2.setFramed(true);

Button r1 = new Button(w2); r1.setType(RADIO);
r1.setPosition(0,0); r1.setLabel("Up");

Button r2 = new Button(w2); r2.setType(RADIO);
r2.setPosition(50,0); r2.setLabel("Down");
r2.setSelected(true); // this button is checked

// The very last element
Button c = new Button(top);
c.setType(REGULAR_BUTTON);
c.setPosition(80,50);
c.setLabel("Cancel");

// Finally, draw the entire window (it draws its subwindows,
// too, of course)
top.draw();

Ras Bodik CS 164 (Fall 2004)
9

The client code in detail (1)

• Create top-level window

– the constructor's argument is always the parent window
– top-level window is parentless (null argument)

Window top = new Window(null);

– set title: null argument means window has no title

top.setTitle(“Find”);

Ras Bodik CS 164 (Fall 2004)
10

The client code in detail (2)

• Now create the first widget (the text label)

Text t = new Text(top);
t.setLabel("Find what:");

– set position within the parent window, given as x,y coord (in percent of the parent size)
– position is relative to top left corner of parent window

t.setPosition(0,0);

• The second widet (the dialog box))

Dialog d = new Dialog(top);
d.setPosition(20,0);

– set dialog box width (in percent of the parent width)

d.setWidth(50);

Ras Bodik CS 164 (Fall 2004)
11

The client code in detail (3)

• Similarly, create the third widget (the Find button)

Button f = new Button(top);

f.setLabel("Find Next");

f.setType(REGULAR_BUTTON);

f.setPosition(80,0);

Ras Bodik CS 164 (Fall 2004)
12

The client code in detail (4)

• Create the left nested window

Window w1 = new Window(top);
w1.setPosition(0,50);

• Create the selection buttons within the nested window

Selection s1 = new Selection(w1);
s1.setPosition(0,0);
s1.setLabel("Match whole word only");

Selection s2 = new Selection(w1);
s2.setPosition(0,50);
s2.setLabel("Match case");

– this selection button is initially checked

s2.setSelected(true);

Ras Bodik CS 164 (Fall 2004)
13

The client code in detail (5)

• Create the right nested window

Window w2 = new Window(top);
w2.setPosition(45,50);
w2.setTitle("Direction");
w2.setFramed(true);

• Create the selection buttons within the nested window

Button r1 = new Button(w2); r1.setType(RADIO);
r1.setPosition(0,0); r1.setLabel("Up");

Button r2 = new Button(w2); r2.setType(RADIO);
r2.setPosition(50,0); r2.setLabel("Down");

– this radio button is initially checked

r2.setSelected(true);
Ras Bodik CS 164 (Fall 2004)

14

The client code in detail (6)

• The last widget

Button c = new Button(top);
c.setType(REGULAR_BUTTON);
c.setPosition(80,50);
c.setLabel("Cancel");

• Finally, draw the top-level window (will draw its sub-windows, too)

top.draw();

Ras Bodik CS 164 (Fall 2004)
15

Designing a higher-level language (1)

• What level of abstraction do we want?
• One painfully low-level detail:

– the GUI code had to specify coordinates
– can we avoid specifying these coordinates? idea:

• organize widgets into rows, specified by the programmer
• have the compiler for our small language compute coordinates for us
• less flexibility (cannot fine tune positions) but faster programming

• Another low-level detail we’d alike to avoid
– specifying parents of windows
– windows (nearly) always nested, so let’s use nested scoping to

convey parenthood

Ras Bodik CS 164 (Fall 2004)
16

Rows: a concept in our new language

Two windows nested in their parent window. Each nested
window contains two elements; the left window has two
rows, the right window has one.

first row of the top-level window; contains three elements:
a text, a dialog box, and a button.

Ras Bodik CS 164 (Fall 2004)
17

Designing a higher-level language (2)

• Why is client code so verbose?
– a separate method call to set each attribute

• good software engineering, but painfully slow coding

– idea: use compact mnemonic encoding

[“Find”] button with label “Find”

o “Up” radio button with label “Up”

O “Up” radio button with label “Up”, initially selected

<---> dialog box with length 3 “units” (there are 3 dashes)

Ras Bodik CS 164 (Fall 2004)
18

Same window in our small language

window "Find" {
"Find what:" <------------------> ["Find next"],
window "" {

x "Match whole word only",
X "Match case"

}
window framed "Direction" {

o "Up"
O "Down"

}
["Cancel"]

}

comma starts a new row

Ras Bodik CS 164 (Fall 2004)
19

Implementation

• We’re done with the language design
– not really, we only conveyed key idea, with an example

– in practice, must define language fully (unambiguously
document semantics of each language feature)

– focus of an entire course on programming languages

• Still, let’s proceed to implementation
– the focus of the final exam’s question

Ras Bodik CS 164 (Fall 2004)
20

Implementation exam questions (1)

• lexical specification of the small language:
– identify lexical elements, and their attributes (if any)

• syntactic analysis:
– write a context-free grammar for the language

• AST
– what AST nodes do you need? what attributes do they have?

– draw an AST for the example program

– syntax directed translation for creating the AST

Ras Bodik CS 164 (Fall 2004)
21

Implementation exam questions (2)

• Implement an interpreter
– assume a visitor for your AST
– can do it in multiple passes

• compute coordinates
• invoke the library methods

• Implement a compiler
– rather trivial once you have an interpreter
– recall PA2 (interpreter vs. compiler)

• one created the NFA
• the other emitted the code that creates the NFA

– compiler created by emitting parts of interpreter code

