Introduction to Programming Languages and
Compilers

Csl64

3:30-5:00 TT
10 Evans

Prof. Bodik CS 164 Lecture 1

Announcement

+ all tomorrow's discussion sections will be held
in 330 Soda (Windows PC lab)

+ discussion section agenda:
- Eclipse tutorial
- how to install the PA1 starter kit
- using CVS
- remote festing

Prof. Bodik CS 164 Lecture 1

Overview

+ trends in programming languages
+ and why they matter to you

+ the structure of the compiler

+ the project

+ course logistics

+ why you want to take this course

Prof. Bodik CS 164 Lecture 1

trends in programming languages

Trends in programming languages

+ programming language and its compiler:
- programmer’s key tools
+ languages undergo constant change
- from C to C++ o Java in just 12 years
- be prepared to program in new ones
+ design simple languages yourselves
- an example in this lecture
+ to see the trend
- let's examine the history...

Prof. Bodik CS 164 Lecture 1

ENIAC (1946, University of Philadelphia)

ENIAC program for external ballistic equations:

ol B a1

(how different is ENIAC in spirit from gaming video cards?)

Prof. Bodik CS 164 Lecture 1

Programming ENIAC

ENIAC (1946, University of Philadelphia)

* programming done by

- rewiring the interconnections

- to set up desired formulas, etc
* Problem:

- slow, error-prone,

- this is how program was loaded
+ Lesson:

- store the program in memory!
(the von Neuman paradigm)

Prof. Bodik CS 164 Lecture 1

UDSAC (1947, Cambridge University)

- the first real computer

- large-scale, fully functional, stored-program
electronic digital computer (by Maurice Wilkes)

+ problem: Wilkes realized:
- “a good part of the remainder of my life was going
to be spent in finding errors in ... programs”
+ solution: so he invented procedures (1951)
- reusable software was born

- procedure: the first (implemented) language
construct

Prof. Bodik CS 164 Lecture 1

Assembly - the language (UNIVAC 1, 1950)

+ Idea translate mnemonic code (assembly) by hand

- write programs with mnemonic codes (add, sub),
with symbolic labels,

- then assign addresses by hand
Example:
clear-and-add a
add b
store ¢
+ translate it to something like
B100 A200
€300

10
Prof. Bodik CS 164 Lecture 1

Assembler - the compiler (Manchester, 1952)

it was assembler nearly as we know it, called AutoCode
- aloop example, in MIPS, a modern-day assembly code:

loop: addi $t3, $t0, -8
addi $t4, $t0, -4
Iw $t1, theArray($t3)
Iw $t2, theArray($t4)
add $t5, $t1, $t2
sw $t5, theArray($t0)
addi $t0, $t0, 4

Gets the last

two elements

Adds them together...
...and stores the result
Moves to next “element*
of theArray

If not past the end of
theArray, repeat

blt $t0, 160, loop

HHEHFHRHFEHREHR

jr $ra

1
Prof. Bodik CS 164 Lecture 1

Assembly programming caught on, but

+ Problem: Software costs exceeded hardware
costsl!

+ John Backus: "Speedcoding”
- Aninterpreter for a high-level language

- Ran 10-20 times slower than hand-written assembly
+ way too slow

12
Prof. Bodik CS 164 Lecture 1

FORTRAN I (1954-57)

The first compiler
- Produced code almost as good as hand-written
- Huge impact on computer science (laid foundations for cs164)
- Modern compilers preserve its outlines
- FORTRAN (the language) still in use today

By 1958, >50% of all software is in FORTRAN

Cut development time dramatically
- 2wks = 2 hrs
- that's more than 100-fold

13
Prof. Bodik CS 164 Lecture 1

FORTRAN I (IBM, John Backus, 1954)

+ Example: nested loops in FORTRAN
- a big improvement over assembler,

- but annoying artifacts of assembly remain:
+ labels and rather explicit jumps (CONTINUE)
+ lexical columns: the statement must start in column 7

- The MIPS loop in FORTRAN:

DO10I=2,40
A[L] = A[I-1] + A[I-2]
10 CONTINUE

14
Prof. Bodik CS 164 Lecture 1

Designing a good language is hard

A good language protects against bugs, but lessons take a while.
An example that cause a failure of a NASA planetary probe:

buggy line:
DO 15I=1100

what was intended (a dot had replaced the comma):
DO 151 =1,100

because Fortran ignores spaces, compiler read this as:
DOI15T = 1.100

which is an assignment into a variable DO15I, not a loop.

This mistake is harder (if at all possible) to make with the
modern lexical rules (white space not ignored) and loop syntax

for (i=1; i < 100; i++) { ... }

15
Prof. Bodik CS 164 Lecture 1

Object-oriented programming (1970s)

inheritance faked using procedural programming:

draw(2DElement p) {
switch (p.type) {
SQUARE: ... // draw a square
break;
CIRCLE: ..// draw acircle
break;
}

}

Problem:
- unrelated code édmwing of SQUARE and CIRCLE) mixed in
the same procedure;
- hard to reuse code common to both

16
Prof. Bodik CS 164 Lecture 1

Object-oriented programming

« In Java, the same code has the desired
separation:
class Circle extends 2DElement {
void draw() { <draw circle> }

}

// similar for Square

+ the dispatch is now much simpler:
- p.draw()

Prof. Bodik CS 164 Lecture 1

Review of historic development

wired interconnects

von Neuman machines & machine code
procedures

assembly (compile by hand)
assembler

FORTRAN I

“cleaner” loops

object-oriented programming in C
virtual calls

Do you see a trend?

18
Prof. Bodik CS 164 Lecture 1

.. and why the trends matter to you

Where will languages go from here?

+ Asyou just saw, the trend is towards higher-
level abstractions
- express the algorithm concisely!
- which means hiding often repeated code fragments
- new language constructs hide more of these low-

level details.

+ Or at least try to detect more bugs when the
program is compiled
- stricter type checking
- we'll leave this for later

20
Prof. Bodik CS 164 Lecture 1

A simple GUI-building language

+ You'll be able to design a simple language
yourself
- to simplify a repetitive programming task
- next example is from Fall'03 final exam
- problem: writing GUI clients is pain; simplify it!

[2%
Fdwhe I
T s ghte wait oty ‘:‘:"a e el |

F Makhzan

21
Prof. Bodik CS 164 Lecture 1

A window contains nested windows

first row of the top-level window; contains three elements:
a text, a dialog box, and a button.

o i
i U Fup T Oown |
11 b gane it S :

™~ i

Two windows nested in their parent window. Each nested
window contains two elements; the left window has two
rows, the right window has one.

22
Prof. Bodik CS 164 Lecture 1

Current programming model

Window top = new Window(null); top.setTitle(* Find"'):

Text 1 = new Text(top); t.setPosition(0,0); t.setLabel("Find what:");

Dialog d = new Dialog(top): d.setPosition(20,0); d.setWidth(18*someConstant);

Button f = new Button(top): setType(REGULAR_BUTTON); f.setPosition(80,0); f.setLabel("Find Next")

Window w1 = new Window(top); wl.setPosition(0,50);

Selection s1 = new Selection(wl); sLsetPosition(0,0); sl.setLabel("Match whole word only");

Selection s2 = new Selection(wl); s2.setPosition(0,50); s2.setLabel("Match case"). s2.setSelected(true);

Window w2 = new Window(top); w2 setPosition(45,50); w2.set Title("Direction"); ~w2.setFramed(true);

Button rl = new Button(w2). rlsefType(RADIO); rlsetPosition(0,0); rlsetLabel("Up"):

Button r2 = new Bufton(w2): r2.setType(RADIO): r2.setPosition(50,0); r2.setLabel("Down"):
r2.setSelected(frue);

Button c = new Button(top): c.setType(REGULAR_BUTTONY); c.setPosition(80,50); c.setLabel("Cancel);
top.draw();

(See Fall03 final exam
for comments and details)

23
Prof. Bodik CS 164 Lecture 1

Design yourself a better programming model

window "Find" {
"Find what:" <-------cemmeeeeev > ["Find next"],
window "" {
x "Match whole word only",
X "Match case"

window framed "Direction" {
0 "Up"
O "Down"

["Cancel"]

Prof. Bodik CS 164 Lecture 1

the structure of a compiler

Three execution environments

+ Interpreters

- Scheme, lisp, perl, python

- popular interpreted languages later got compilers
+ Compilers

-C

- Java (compiled to bytecode)
+ Virtual machines

- Java bytecode runs on an interpreter

- interpreter often aided by a JIT compiler

26
Prof. Bodik CS 164 Lecture 1

The Structure of a Compiler

Scanning (Lexical Analysis)
Parsing (Syntactic Analysis)

Type checking (Semantic Analysis)
Optimization

Code Generation

o s>wpn

The first 3, at least, can be understood by

analogy to how humans comprehend English.

Prof. Bodik CS 164 Lecture 1

Lexical Analysis

+ Lexical analyzer divides program text into
"words" or “tokens"

if x==ythenz=1 elsez=2;

+ Units:
if, x, ==,y, then, z,=,1,;, else, z,=, 2,

28
Prof. Bodik CS 164 Lecture 1

Parsing

+ Once words are understood, the next step is
to understand sentence structure

* Parsing = Diagramming Sentences
- The diagram is a free

Prof. Bodik CS 164 Lecture 1

Diagramming a Sentence

This line is a longer sentence

o

article noun verb article adjective noun

NSO =L

subject object
sentence

30
Prof. Bodik CS 164 Lecture 1

Parsing Programs

+ Parsing program expressions is the same
+ Consider:

fx==ythenz=1;elsez=2,
+ Diagrammed:

X ==y z 1 z 2
relation assign assign
\ \ \
predicate then-stmt else-stmt
e e EEEe
if-then-else

31
Prof. Bodik CS 164 Lecture 1

Semantic Analysis in English

+ Example:
Jack said Jerry left his assignment at home.
What does “his" refer to? Jack or Jerry?

+ Even worse:
Jack said Jack left his assignment at home?
How many Jacks are there?
Which one left the assignment?

32
Prof. Bodik CS 164 Lecture 1

Semantic Analysis I

* Programming {
languages define int Jack = 3;
strict rules to avoid
N {
such ambiguities)
int Jack = 4;
System.out.

« This Java code print(Jack);

prints "4"; the inner
definition is used }

33
Prof. Bodik CS 164 Lecture 1

Semantic Analysis IT

+ Compilers also perform checks to find bugs

+ Example:
Jack left her homework at home.

+ A “type mismatch" between her and Jack

- we know they are different people
(presumably Jack is male)

34
Prof. Bodik CS 164 Lecture 1

Code Generation

* A translation into another language
- Analogous to human translation

+ Compilers for Java, C, C++

- produce assembly code (typically)
+ Code generators

- produce C or Java

35
Prof. Bodik CS 164 Lecture 1

the project

The project

+ A compiler for Decaf (a small Java)

- PAL: inferpreter of a subset of Decaf, a warm-up
- PA2-5: the compiler of Decaf, in four easy pieces

+ PA2: scanner (plus scanner generator)

+ PA3: parser (plus parser generator)

+ PA4: code generator for non-OO features
+ PAB: code generator for OO features

37
Prof. Bodik CS 164 Lecture 1

The Decaf compiler

Decaf program

PA2: lexer

stream of tokens

PA3: parser

Abstract Syntax Tree (AST)

PA4: PA5:

non-00 00
checker+ |checker+
code gen||code gen

[x86 assembly

run it on Windows PC (Linux?)
38
Prof. Bodik CS 164 Lecture 1

PA1l: SkimDecaf Interpreter

SkimDecaf pgm.
| |

SkimDecaf pgm.

Eclipse Java parser

AST

PAL: interpreter

39
Prof. Bodik CS 164 Lecture 1

How you will implement the scanner, parser

Java lexer code lexer

description

lexer generator

PA3 Java parser code parser
1 L
parser ‘—— description
v Gy e
you write this
PA4: PA5:

non-O0 [e]e]
ichecker+ [|checker+

. I‘
code gen||code gen automatically generated

l

40
Prof. Bodik CS 164 Lecture 1

course logistics

(see course info on the web for more)

Academic (Dis)honesty

* Read the policy at:
- http://www.eecs.berkeley.edu/Policies/acad.dis.shtml

+ We'll be using a state-of-the art plagiarism detector.
- Before you ask: yes, it works very well.

+ You are allowed to discuss the assignment

- but you must acknowledge (and describe) help in your
submission.

42
Prof. Bodik CS 164 Lecture 1

Grading

+ This is going to be a fun course, but graded onaona
curve, as customary
- so, yes, you're competing against one another.
- grades will follow department guidelines
- course average GPA will be around 2.9
(before extra credit for the optimization contest)
- more at http://www.eecs.berkeley.edu/Policies/ugrad.grading.shtml
- this has proven to be fair and just

+ A lot of grade comes from a project
- form a strong team
- use the course newsgroup to find a partner

43
Prof. Bodik CS 164 Lecture 1

Remote testing

+ A new testing infrastructure
- to help you debug your compiler
- being introduced this semester (may have a few
rough edges, so bear with us)
+ The rationale:
- give you (indirect) access fo our reference solution

- you will be able to compile and run your Decaf
programs on our compiler
+ and check if your compiler behaves like our compiler does

44
Prof. Bodik CS 164 Lecture 1

Remote testing

* The process:
- you write test programs to test your compiler
- store them with your compiler in a CVS repository
- our scripts will pick them up and run your tests on your
compiler and also our compiler
+ mismatch in outputs indicates a bug (guess in whose code)
our scripts will also measure “test coverage”
+ what fraction of our compiler did your tests execute

- low coverage indicates you didn't write enough tests, and hence a
bug in your code may be undetected

you pick up results of remote testing via CVS
- and display them using a special Eclipse plugin (on cs164 web site)

45
Prof. Bodik CS 164 Lecture 1

conclusion

Why are you taking cs164?

* To learn how languages are executed
- compiler is programmer’s most frequently used tool
- be prepared for new languages
+ To go through a cool project
- where major parts are automatically generated
- with your own generators!
+ To develop your own small languages
- and a compiler (or code generator) for it
- become a more productive programmer

47
Prof. Bodik CS 164 Lecture 1

Take cs164. Become unoffshorable.

“We design them here, but the labor is cheaper in Hell.”

48
Prof. Bodik CS 164 Lecture 1

