Building a Scanner

C5164, Fall 2004

Ras Bodik, CS 164, Fall 2004

Administrativia

- Extra credit for bugs in project assignments
- in starter kits and handouts
- TAs are final arbiters of what's a bug
- only the first student to report the bug gets credit

Ras Bodik, CS 164, Fall 2004

What does a lexer do?

Recall: The Structure of a Compiler

Decaf program (stream of characters)

stream of tokens

Abstract Syntax Tree (AST)

AST with annotations (types, declarations)

maybe x86

Ras Bodik, CS 164, Fall 2004

Recall: Lexical Analysis

+ The input is just a sequence of characters. Example:
i (==)
z=0;
else
z=1

* More accurately, the input is string:
\tif (i == j)\n\t\tz = O;\n\telse\n\t\tz = 1;

* Goal: find lexemes and map them fo tokens:
1. partition input string into substrings (called lexemes), and
2. classify them according to their role (role = token)

Ras Bodik, CS 164, Fall 2004

Continued

+ Lexer input:
\tif(i==j)\n\t\tz = 0;\n\telse\n\t\tz = 1;
+ partitioned into these /exemes.
(il P\t 2] [=] [o[:\n\t]else]\m\t\t[Z] [F] 1]]
+ mapped to a sequence of tokens
IF, LPAR, ID("i"), EQUALS, ID("j") ...
+ Notes:
- whitespace lexemes are dropped, not mapped fo tokens
+ is this the same fatal mistake as in FORTRAN? (see Lecture 1)

- some fokens have attributes: the lexeme and/or line number
+ why do we need them?

Ras Bodik, CS 164, Fall 2004

What's a Token?

+ A token is a syntactic category
- InEnglish:
noun, verb, adjective, ...
- Ina programming language:
Identifier, Integer, Keyword, Whitespace, ...

+ Parser relies on the token distinctions:
- identifiers are treated differently than keywords

- but all identifiers are treated the same, regardless of what
lexeme created them

Ras Bodik, CS 164, Fall 2004

What are lexemes?

+ Webster:
- “items in the vocabulary of a language”
+ csl64:

- same: items in the vocabulary of a language:
+ numbers, keywords, identifiers, operators, etc.
- strings into which the input string is partitioned.

Ras Bodik, CS 164, Fall 2004

How to build a scanner for Decaf?

Writing the lexer

* Not by hand

- tedious, repetitious, error-prone, non-maintainable

+ Instead, we'll build a lexer generator
- once we have the generator, we'll only describe the
lexemes and their tokens ...
+ that is, provide Decaf's lexical specification (the What)
- .. and generate code that performs the partitioning
+ generated code hides repeated code (the How)

10
Ras Bodik, CS 164, Fall 2004

Code generator: key benefit

® The scanner generator allows the programmer
to focus on:

* What the lexer should do,
+ rather than How it should be done.

+ what: declarative programming
* how: imperative programming

Ras Bodik, CS 164, Fall 2004

Imperative scanner (in Java)

+ Let's first build the scanner in Java, by hand:

+ to see how it is done, and where's the repetitious
code that we want to hide

A simple scanner will do. Only four tokens:

TOKEN |Lexeme

ID a sequence of one or more letters
or digits starting with a letter

EQUALS [*=="
PLUS B
TIMES |"*"

Ras Bodik, CS 164, Fall 2004

12

Imperative scanner

c=nextChar();
if (¢ =='=") { c=nextChar(); if (c == '=") {return EQUALS:}}
if (c =="+){ return PLUS; }
if (c == "*") { return TIMES; }
if (cis aletter) {
c=NextChar():
while (c is a letter or digit) { c=NextChar(); }
undoNextChar(c);
return ID;

13
Ras Bodik, CS 164, Fall 2004

Imperative scanner

+ You could write your entire scanner in this style

- and for small scanners this style is appropriate
+ This code looks simple and clean, but try to add

- fokens that start with the same string: “if" and “if fy"

- C-style comments: /* anything here /* nested comments */ */

- string literals with escape sequences: "..\t .. \".."

- error handling, e.g., badly formed strings (see PA2)
+ Look at StreamTokenizer.nextToken() for an example

of real imperative scanner

- inEclipse, type Ctrl+Shift+T.

- Enter StreamTokenizer.

- Press F4. In the Hierarchy view, select method nextToken.

14
Ras Bodik, CS 164, Fall 2004

Maximal munch rule

+ What is the need for undoNextChar()?

- it performs look-ahead, to determine whether the
ID lexeme can be grown further

+ This is an example of maximal much rule:
- this rule followed by all scanners
- the rule: the input character stream is partitioned
into lexemes that are as large as possible
- Ex.: in Java, "iffy" is not partitioned into “if" (the
IF keyword) and “fy" (ID), but into “iffy" (ID)

15
Ras Bodik, CS 164, Fall 2004

Imperative Lexer: what vs. how

c=nextChar();
if (c =='=") { c=nextChar(); if (c == '=") {return EQUALS}}
if (c =="+){ return PLUS; }
if (¢ == "*"){ return TIMES; }
if (cis aletter){
c=NextChar();
while (c is a letter or digit) { c=NextChar(); }
undoNextChar(c);
return ID;
} @ little logic, much plumbing

16
Ras Bodik, CS 164, Fall 2004

Identifying the plumbing (the how)

c=nextChar();
if (c =='=") { c=nextChar(); if (c =="'=") {return EQUALS:}}
if (c =="'+) { return PLUS; }
if (c ==""){ return TIMES; }
if (cis aletter) {
c=NextChar();
while (c is a letter or digit) { c=NextChar(); }
undoNextChar(c);
return ID;
} < characters read always the same way

17
Ras Bodik, CS 164, Fall 2004

Identifying the plumbing (the how)

c=nextChar();
if (c =='=") { c=nextChar(); if (c == '=") {return EQUALS:}}
if (c =="'+) { return PLUS; }
if (c =="*"){ return TIMES; }
if (cis aletter){
c=NextChar();
while (c is a letter or digit) { c=NextChar(); }
undoNextChar(c):
return ID;

} « tokens are always return-ed

18
Ras Bodik, CS 164, Fall 2004

Identifying the plumbing (the how)

c=nextChar();
if (¢ =='=") { c=nextChar(); if (c == '=") {return EQUALS:}}
if (c =="+){ return PLUS; }
if (c == "*") { return TIMES; }
if (cis aletter) {
c=NextChar():
while (c is a letter or digit) { c=NextChar(); }
undoNextChar(c);
return ID;
} « the lookahead is explicit

19
Ras Bodik, CS 164, Fall 2004

Identifying the plumbing (the how)

c=nextChar();
if (¢ =='=") { c=nextChar(); if (c == '=") {return EQUALS:}}
if (c=="+){return PLUS; }
if (c == "*') { return TIMES; }
if (cis aletter){
c=NextChar();
while (c is a letter or digit) { c=NextChar(); }
undoNextChar(c):
return ID;
} = must build decision tree out of nested if's (yuck!)

20
Ras Bodik, CS 164, Fall 2004

Can we hide the plumbing?

+ That is, can we avoid having to
- spell out the details of calls to the input method?
- write the return in front of tokens?
- code the look-ahead code explicitly?
- use if's and while's to indicate the decision tree?
+ Inshort, can we make the code look like the
specification table?

TOKEN Lexeme
D a sequence of one or more letters or digits starting
with a letter
EQUALS B
PLUS "y
TIMES i 21

Ras Bodik, CS 164, Fall 2004

Separate out the how (plumbing)

+ The code actually follows a simple pattern:

- read next character and compare it with some
predetermined character

- if there is a match, jump to a different line of code
- repeat this until you return a token.

+ Is there a programming language that can
encode this concisely?
- yes, finite automatal

read, compare read, compare

22
Ras Bodik, CS 164, Fall 2004

Separate out the what

c=NextChar(); }

Ras Bodik, CS 164, Fall 2004

A declarative scanner

Part 1: declarative (the what)

- describe each token as a finite automaton

must be supplied for each scanner, of course (it specifies
the lexical properties of the input language)

Part 2: imperative (the how)

- connect these automata into a scanner automaton
common to all scanners (like a library)
responsible for the mechanics of scanning

2
Ras Bodik, CS 164, Fall 2004

DFAs

Deterministic finite automata (DFA)

- We'll use DFA's as recognizers:

- given an input string, the DFA will recognize whether

the string is a valid lexeme
- “recoghize" means answer true or false

- Example: Is "xyz" an identifier? The DFA will says yes.

- DFA's alone insufficient to build a scanner:
- DFA's recognize if a string is, say, an identifier

- but alone can't partition the input program into lexemes

- so we'll need to use them in a special way

26
Ras Bodik, CS 164, Fall 2004

Deterministic Finite Automata

+ Example: Decaf Identifiers

- sequences of one or more letters or underscores or digits,
starting with a letter or underscore:

letter | _

, O letter | *_” | digit
OO

21
Ras Bodik, CS 164, Fall 2004

Example: Integer Literals

+ DFA that accepts integer literals with an
optional + or - sign:

digit

28

Ras Bodik, CS 164, Fall 2004

And another (more abstract) example

+ Alphabet {0,1}
+ What strings does this recognize?

Ras Bodik, CS 164, Fall 2004

Finite- Automata State Graphs

+ A state Q

+ The start state /O
+ A final state @

a

- A fransition Q/\O

Ras Bodik, CS 164, Fall 2004

30

Finite Automata

+ Transition
S; %S,

+ Is read
In state s; on input

w_n

a“ go to state s,

+ If end of input
- If in accepting state => accept
- Otherwise => reject
+ If no transition possible (got stuck) => reject

31
Ras Bodik, CS 164, Fall 2004

Formal Definition

- A finite automaton is a 5-tuple (£, Q, A, q, F)
where:
- Aninput alphabet =
- A set of states Q
- A start state q
- A set of final states F = Q

- Ais the state transition functionn Q x = 2> Q
(i.e., encodes transitions state —iut state)

32
Ras Bodik, CS 164, Fall 2004

Language defined by DFA

+ The language defined by a DFA is the set of
strings accepted by the DFA.

- in the language of the identifier DFA shown above:
X, tmp2, XyZzy, position27.

- notin the language of the identifier DFA shown
above:
+ 123, a?, 13apples.

33
Ras Bodik, CS 164, Fall 2004

the declarative scanner

Part 1: create a DFA for each token

IDd: Qm
% letter | digit

PLUS: O O

W n

EQUALS: —{)———()——

35
Ras Bodik, CS 164, Fall 2004

Part 2: allow actions on DFA transitions

+ the action can be one of
- "put back one character" or
- "return token XYZ",

+ such DFA is called a transducer
- it translates input string to an output string

36
Ras Bodik, CS 164, Fall 2004

Step 2: example of extending a DFA

*+ The DFA recognizing identifiers is modified to:

letter | digit any char except
letter letter or digit
5o ()
40 action: @
+ put back 1 char
* refurn ID

* Look-ahead is added for lexemes of variable length
- inour case, only ID needs lookahead
A note on action “return ID"

- resets the scanner back into start state S (recall that
scanner is called by parser; each time, one token is r‘eTur;r;ed)

Ras Bodik, CS 164, Fall 2004

Step 2: Combine the extended DFA's

The algorithm: merge start nodes of the DFA's.
FS

return PLUS |, ,

'+

letter | digit put back 1 char;
F4© when S letter 6> return ID
return TIMES D any char except =
=" letter or digit 3

return EQUALS ="

F

Ras Bodik, CS 164, Fall 2004

38

Towards a realistic scanner

+ Building a scanner out of DFA's (as shown) is simple
but doesn't quite work

+ Consider a fifth token type, for the assignment
operator

TOKEN Lexeme

D a sequence of one or more letters or digits starting with a
letter

EQUALS R==g

ASSIGN =0

PLUS P

TIMES el

39
Ras Bodik, CS 164, Fall 2004

ke
O return TIMES

Correct scanner

Fs

return PLUS | . .
letter | digit put back 1 char;

letter § return ID

any char except
o ID letter or digit Fs

Fy

w_n

any char except

return EQUALS put back 1 char; return ASSIGN

Fy

Ras Bodik, CS 164, Fall 2004

40

But above algorithm produces

Fs

return PLUS | . .

" letter | digit
etter 1 digi put back 1 char;
i
O return TIMES

letter 6> return ID

wn any char except
return ASSIGN letter or digit

Bad:

* not a DFA

+ should perform look-ahead
Fi |Fix it with NFA's! 1

NFAs

Deterministic vs. Nondeterministic Automata

- Deterministic Finite Automata (DFA)
- one transition per input characater per state
- ho e-moves
+ Nondeterministic Finite Automata (NFA)
- allows multiple outgoing transitions for one input
- can have e-moves
* Both: finite automata have finite memory
- Need only to encode the current state
- NFA's can be in multiple states at once (stay tuned)

43
Ras Bodik, CS 164, Fall 2004

A simple NFA example

+ Alphabet: { 0,1}

+ The operation of the automaton is not
completely defined by the input
- On input "11" the automaton could be in either state

44
Ras Bodik, CS 164, Fall 2004

Epsilon Moves

+ Another kind of transition: e-moves
(o
+ Machine can move from state A to state B
without reading input

45
Ras Bodik, CS 164, Fall 2004

Execution of Finite Automata

+ A DFA can take only one path through the
state graph
- Completely determined by input

+ NFAs can choose
- whether to make e-moves
- which of multiple transitions for a single input to
take
- so we think of an NFA as being in one of multiple
states (see next example)

4
Ras Bodik, CS 164, Fall 2004

Acceptance of NFAs

+ An NFA can get into multiple states
1

O

* Input: 101
* Rule: NFA accepts if it can get in a final state

47
Ras Bodik, CS 164, Fall 2004

NFA vs. DFA (1)

+ NFA's and DFA’s are equally powerful

- each NFA can be translated into a corresponding DFA (one
that recognizes same strings)

- formally, NFAs and DFAs recognize the same set of languages
(called regular languages)

But NFA's are more convenient

- they allow easy merges of automata, which helps in scanner
construction

And DFAs are easier to implement

- There are no choices to consider

in PA2, you will use NFA's

- we'll give you NFA recognizer code

48
Ras Bodik, CS 164, Fall 2004

NFA vs. DFA (2)

+ For a given language the NFA can be simpler
than the DFA

NFA

DFA

+ DFA can be exponentially larger than NFA

49
Ras Bodik, CS 164, Fall 2004

full declarative scanner

The algorithm

With NFA's, we can develop the scanner:

1. Construct an automaton for each lexeme (as before)

2. Merge them into the scanner automaton (as before)

3. Don't extend the automata as before, instead
whenever you reach a final state:
- remember position in input (so that you can undo reads)
- keep reading more characters, moving to other states
whenever you get stuck (cannot make a move on next char):
- return to the last final state (i.e., undo the reads)
- return the token associated with this final state

51
Ras Bodik, CS 164, Fall 2004

Notes

+ Notice that reading past final state
implements look-ahead

+ This look-ahead is unbounded
- can return any number of characters

+ Can you think of two lexemes that will require

the scanner to return a large amount of
characters?

- "large" means we can write an input that will make
the necessary look-ahead arbitrarily large.

52
Ras Bodik, CS 164, Fall 2004

Practical concerns

* Ambiguity
- problem: scanner may reach multiple final states at once
- ex.: "if" matches both ID and IF (the keyword)
- solution: prioritize tokens (IF wins over ID)
- Discarding whitespace
- solution: final state for white-space lexeme is special: don't
return a token, but jump to (common) start state
+ Error inputs
- problem: discard illegal lexemes and print an error message
- simple solution (discard char by char): add a lexeme that

matches any character, giving it lowest priority; it will match
when no other will

53
Ras Bodik, CS 164, Fall 2004

We have a full declarative scanner

- imperative part,
+ stored in the library (the third step of the algorithm)

+ this is the run-time: it performs look-ahead, moves, input
matching, returning tokens

- declarative part
+ think of it as configuring the run-time of the scanner

+ configuration done by specifying an automaton for each
token

54
Ras Bodik, CS 164, Fall 2004

Programming the declarative scanner

+ configuring the run-time can be done by hand

- This code creates a DFA for the EQUALS token:
Node start = new Node(), middle = new Node();
Node final = new FinalNode(EQUALS);
start.addEdge(middle, '="); middle.addEdge(final, '=");

- this is an improvement over the imperative scanner
+ more readable, maintainable, les error-prone

- but our goal is to avoid writing even this,
+ we'll write a code generator
+ it will tfranslate regular expressions (our textual program)

into NFA's

55
Ras Bodik, CS 164, Fall 2004

regular expressions

Regular Expressions

Automaton is a good "visual” aid

- but is not suitable as a specification
(its textual description is too clumsy)

regular expressions are a suitable specification

- a compact way to define a language that can be accepted by
an automaton.

used as the input to a scanner generator

- define each token, and also

- define white-space, comments, efc

* these do not correspond to tokens,
but must be recognized and ignored.

57
Ras Bodik, CS 164, Fall 2004

Example: Pascal identifier

+ Lexical specification (in English):
- aletter, followed by zero or more letters or digits.
+ Lexical specification (as a regular expression):
- letter . (letter | digit)*

| | means "or"

means "“followed by"
* ' means zero or more instances of
() are used for grouping

58
Ras Bodik, CS 164, Fall 2004

Operands of a regular expression

Operands are same as labels on the edges of an FSM
- single characters, or
- the special character ¢ (the empty string)

"letter" is a shorthand for
-alblcl..]z]Al.]|Z
"digit" is a shorthand for

-0/1/..]9
+ sometimes we put the characters in quotes
- necessary when denoting | . *

59
Ras Bodik, CS 164, Fall 2004

Precedence of | . * operators.

Regular Analogous Precedence
Expression Arithmetic
Operator Operator
| plus lowest
. times middle
* exponentiation highest

+ Consider regular expressions:
- letter.letter | digit*
- letter.(letter | digit)*

60
Ras Bodik, CS 164, Fall 2004

10

More examples

+ Describe (in English) the language defined by
each of the following regular expressions:

- letter (letter | digit*)

- digit digit* "" digit digit*

61
Ras Bodik, CS 164, Fall 2004

Example: Integer Literals

+ An integer literal with an optional sign can be
defined in English as:
- “(nothing or + or -) followed by one or more digits"
+ The corresponding regular expression is:
- (+|-l¢).(digit.digit*)
+ A new convenient operator '+
- same precedence as *'
- digit.digit* is the same as
- digit+ which means "one or more digits"

62
Ras Bodik, CS 164, Fall 2004

Language Defined by a Regular Expression

+ Recall: language = set of strings

* Language defined by an automaton
- the set of strings accepted by the automaton

+ Launguage defined by a regular expression
- the set of strings that match the expression.

Regular Exp. Corresponding Set of Strings
€ {"}

a {"a"}

a.b.c {"abc"}

alb|c {"a", "b", "c"}
@lblor {™, "a", "b", "c", "aa", "ab", ..., "bccabb" ..}

63
Ras Bodik, CS 164, Fall 2004

Translating RE to NFA's

+ key idea:
- find hierarchy in the regular expression
+ find nested RE's
- define translation for individual operation
- compose the translations of nested RE's
+ RE'sas AST
- franslation via AST traversal

64
Ras Bodik, CS 164, Fall 2004

Regular Expressions to NFA (1)

+ For each kind of rexp, define an NFA
- Notation: NFA for rexp M

* Fore
—(O——0
* For input a

~O—-0

65
Ras Bodik, CS 164, Fall 2004

Regular Expressions to NFA (2)

- ForA.B
2 O
- ForA|B

66

Ras Bodik, CS 164, Fall 2004

11

Regular Expressions to NFA (3)

+ For A*

67

Ras Bodik, CS 164, Fall 2004

Example of RegExp -> NFA conversion

+ Consider the regular expression
10yt
+ The NFA is

Ras Bodik, CS 164, Fall 2004

Automatically translating RE's to NFA's

+ we need an AST that represents the RE
- the translation is then a bottom up traversal of the AST
- like in Java pretty printing
+ options:
- properly,
+ you write AST designed for RE operators
- and a parser from RE syntax to the RE AST
- inPA2, we'll reuse Java syntax and Java AST
+ overload Java operators

+ it's a hack, but it allows us to implement the RE-NFA translation
quickly

69
Ras Bodik, CS 164, Fall 2004

odds and ends

Practical issues

« PA2, we'll use NFAs

- But DFAs are often faster

- because they can be implemented with tables
+ Next few slides

- NFA to DFA conversion

- table implementation of DFA’'s
+ Feel free to implement these two in PA2

- experiment with how much faster your scanner is
than the NFA-based scanner

Ras Bodik, CS 164, Fall 2004

NFA to DFA. The Trick

+ Simulate the NFA

+ Each state of DFA
= a non-empty subset of states of the NFA
+ Start state
= the set of NFA states reachable through e-moves
from NFA start state
+ Add a transition S -2 S' to DFA iff

- S'is the set of NFA states reachable from the
states in S after seeing the input a
+ considering e-moves as well

72
Ras Bodik, CS 164, Fall 2004

12

NFA -> DFA Example

€

e olee
#E)P OESONE
€ /
< roseon
esrcon,

Ras Bodik, CS 164, Fall 2004

NFA to DFA. Remark

+ An NFA may be in many states at any time
* How many different states ?

« If there are N states, the NFA must be in
some subset of those N states

*+ How many non-empty subsets are there?
- 2N - 1= finitely many

74
Ras Bodik, CS 164, Fall 2004

Implementation

*+ A DFA can be implemented by a 2D table T
- One dimension is "states”
- Other dimension is “input symbols”
- For every transition S; »¢ S, define T[i,a] = k

+ DFA “execution”

- If in state S; and input a, read T[i,a] = k and skip to
state S,

- Very efficient

Ras Bodik, CS 164, Fall 2004

Table Implementation of a DFA

Implementation (Cont.)

+ NFA -> DFA conversion is at the heart of tools
such as flex or jlex

+ But, DFAs can be huge

- In practice, flex-like tools trade off speed
for space in the choice of NFA and DFA
representations

Ras Bodik, CS 164, Fall 2004

0 1
S T U
T T U
U T U
76
Ras Bodik, CS 164, Fall 2004
the end

13

