

Administrativia

- Extra credit for bugs in project assignments
- in starter kits and handouts
- TAs are final arbiters of what's a bug
- only the first student to report the bug gets credit

Recall: The Structure of a Compiler

Decaf program (stream of characters)

Continued

- Lexer input:
$\backslash t i f(i==j) \backslash n \backslash t \backslash t z=0 ; \backslash n \backslash t e l s e \backslash n \backslash t \backslash t z=1$;
- partitioned into these lexemes.

- mapped to a sequence of tokens IF, LPAR, ID("i"), EQUALS, ID("j")...
- Notes:
- whitespace lexemes are dropped, not mapped to tokens - is this the same fatal mistake as in FORTRAN? (see Lecture 1)
- some tokens have attributes: the lexeme and/or line number - why do we need them?

1. partition input string into substrings (called lexemes), and 2. classify them according to their role (role $=$ token $)$

What's a Token?

- A token is a syntactic category
- In English:
noun, verb, adjective, ..
- In a programming language:

Identifier, Integer, Keyword, Whitespace, ...

- Parser relies on the token distinctions:
- identifiers are treated differently than keywords
- but all identifiers are treated the same, regardless of what lexeme created them

How to build a scanner for Decaf?

Code generator: key benefit

- The scanner generator allows the programmer to focus on:
- What the lexer should do,
- rather than How it should be done.
- what: declarative programming
- how: imperative programming

Ras Bodik, CS 164, Fall 2004

What are lexemes?

- Webster:
- "items in the vocabulary of a language"
- cs164:
- same: items in the vocabulary of a language:
- numbers, keywords, identifiers, operators, etc.
- strings into which the input string is partitioned.

Writing the lexer

- Not by hand
- tedious, repetitious, error-prone, non-maintainable
- Instead, we'll build a lexer generator
- once we have the generator, we'll only describe the lexemes and their tokens ...
- that is, provide Decaf's lexical specification (the What)
- ... and generate code that performs the partitioning - generated code hides repeated code (the How)

Imperative scanner (in Java)

- Let's first build the scanner in Java, by hand:
- to see how it is done, and where's the repetitious code that we want to hide
- A simple scanner will do. Only four tokens:

TOKEN	Lexeme
ID	a sequence of one or more letters or digits starting with a letter
EQUALS	"=="
PLUS	"+"
TIMES	"t"
Ras Bodik, CS 164, Fall 2004	

Ras Bodik, CS 164, Fall 2004

```
Imperative scanner
c=nex+Char();
if (c== '=') { c=nex+Char(); if (c == '=') {return EQUALS;}}
if (c== '+') {return PLUS; }
if (c == '*') {return TIMES; }
if (c is a letter) {
    c=NextChar();
    while (c is a letter or digit) { c=NextChar(); }
    undoNex+Char(c);
    return ID:
}
```


Imperative scanner

- You could write your entire scanner in this style - and for small scanners this style is appropriate
- This code looks simple and clean, but try to add
- tokens that start with the same string: "if" and "iffy"
- C-style comments: /* anything here /* nested comments */*/
- string literals with escape sequences: "...\† ... \"..."
- error handling, e.g., badly formed strings (see PA2)
- Look at StreamTokenizer.nextToken() for an example of real imperative scanner
- in Eclipse, type Ctrl+Shift+T.

Enter StreamTokenizer
Press F4. In the Hierarchy view, select method nextToken.

Imperative Lexer: what vs. how
c=nextChar():
if ($c==$ ' $=$ ') $\left\{c=\right.$ nextChar(); if ($c===^{\prime}=$ ') \{return EQUALS; $\left.\}\right\}$
if ($c==$ '+') \{ return PLUS; \}
if ($c=-$ '*') \{return TIMES; \}
if (c is a letter) \{
$c=$ NextChar();
while (c is a letter or digit) $\{c=$ NextChar(); \} undoNextChar(c):
return ID:

Identifying the plumbing (the how)

c=nextChar();
if ($c==$ ' $=$ ') $\{c=$ nextChar(); if ($c==$ ' $=$ ') \{return EQUALS; $\}\}$
if ($c==$ ' + ') \{ return PLUS; \}
if $(c=-$ '*') \{return TIMES; \}
if (c is a letter) \{
$c=$ NextChar();
while (c is a letter or digit) $\{c=$ NextChar(); \} undoNextChar(c);
return ID:

Identifying the plumbing (the how)

```
c=nextChar();
if (c== '=') { c=nex+Char(); if (c == '=') {return EQUALS;}}
if (c== '+') {return PLUS; }
if (c == '*') {return TIMES; }
if (c is a letter) {
    c=NextChar();
    while (c is a letter or digit) { c=NextChar(); }
    undoNex+Char(c);
    return ID:
} characters read always the same way
```

```
Identifying the plumbing (the how)
c=nex+Char();
if (c== '=') { c=nex+Char(); if ( }c== '=') {return EQUALS;}
if (c== '+') {return PLUS; }
if (c == '*') {return TIMES; }
if (c is a letter) {
    c=NextChar();
    while (c is a letter or digit) { c=NextChar(); }
    undoNex+Char(c);
    return ID:
}
                                    * the lookahead is explicit
                                    Ras Bodik, CS 164, Fall }200
```

Identifying the plumbing (the how)
c=nextChar():
if (c = '=') {c=nex+Char(); if (c== '=') {return EQUALS;}}
if (c == '+') {return PLUS; }
if (c == '*') {return TIMES; }
if (c is a letter) {
c=NextChar();
while (c is a letter or digit) { c=NextChar(); }
undoNextChar(c);
return ID:
} must build decision tree out of nested if's (yuck!)

```
Ras Bodik, CS 164, Fall 2004

\section*{Separate out the how (plumbing)}
- The code actually follows a simple pattern:
- read next character and compare it with some predetermined character
- if there is a match, jump to a different line of code
- repeat this until you return a token.
- Is there a programming language that can encode this concisely?
- yes, finite automata!


\section*{A declarative scanner}

\section*{Part 1: declarative (the what)}
- describe each token as a finite automaton
- must be supplied for each scanner, of course (it specifies the lexical properties of the input language)

Part 2: imperative (the how)
- connect these automata into a scanner automaton
- common to all scanners (like a library)
- responsible for the mechanics of scanning

Ras Bodik, CS 164, Fall 2004

Separate out the what



\section*{Example: Integer Literals}
- DFA that accepts integer literals with an optional + or - sign:


Ras Bodik, CS 164, Fall 2004

Finite-Automata State Graphs
- A state
- The start state

- A final state

- A transition


Finite Automata
- Transition
\[
s_{1} \rightarrow^{a} s_{2}
\]
- Is read
\[
\text { In state } s_{1} \text { on input "a" go to state } s_{2}
\]
- If end of input
- If in accepting state => accept
- Otherwise => reject
- If no transition possible (got stuck) => reject

A finite automaton is a 5-tuple ( \(\Sigma, Q, \Delta, q, F)\) where:
- An input alphabet \(\Sigma\)
- A set of states \(Q\)
- A start state \(q\)
- A set of final states \(F \subseteq Q\)
- \(\Delta\) is the state transition function: \(Q \times \Sigma \rightarrow Q\)
(i.e., encodes transitions state \(\rightarrow\) input state)

Language defined by DFA
- The language defined by a DFA is the set of strings accepted by the DFA.
- in the language of the identifier DFA shown above:
- \(x\), tmp2, XyZzy, position27.
- not in the language of the identifier DFA shown above:
- 123, a?, 13apples.

Part 1: create a DFA for each token


Part 2: allow actions on DFA transitions
- the action can be one of
- "put back one character" or
- "return token XYZ",
- such DFA is called a transducer
- it translates input string to an output string

Step 2: example of extending a DFA
- The DFA recognizing identifiers is modified to:

- Look-ahead is added for lexemes of variable length - in our case, only ID needs lookahead
- A note on action "return ID"
- resets the scanner back into start state S (recall that scanner is called by parser; each time, one token is returned) Ras Bodik, CS 164, Fall 2004

\section*{Step 2: Combine the extended DFA's}


\section*{Deterministic vs. Nondeterministic Automata}
- Deterministic Finite Automata (DFA)
- one transition per input characater per state
- no \(\varepsilon\)-moves
- Nondeterministic Finite Automata (NFA)
- allows multiple outgoing transitions for one input
- can have \(\varepsilon\)-moves
- Both: finite automata have finite memory
- Need only to encode the current state
- NFA's can be in multiple states at once (stay tuned)

\section*{Epsilon Moves}
- Another kind of transition: \(\varepsilon\)-moves

- Machine can move from state \(A\) to state \(B\) without reading input

\section*{NFA vs. DFA (1)}
- NFA's and DFA's are equally powerful
- each NFA can be translated into a corresponding DFA (one that recognizes same strings)
- formally, NFAs and DFAs recognize the same set of languages (called regular languages)
- But NFA's are more convenient
- they allow easy merges of automata, which helps in scanner construction
- And DFAs are easier to implement
- There are no choices to consider
- in PA2, you will use NFA's
- we'll give you NFA recognizer code
- Input: 101
- Rule: NFA accepts if it can get in a final state

\section*{NFA vs. DFA (2)}
- For a given language the NFA can be simpler than the DFA

NFA


DFA

- DFA can be exponentially larger than NFA

Ras Bodik, CS 164, Fall 2004
full declarative scanner

\section*{Notes}
- Notice that reading past final state implements look-ahead
- This look-ahead is unbounded
- can return any number of characters
- Can you think of two lexemes that will require the scanner to return a large amount of characters?
- "large" means we can write an input that will make the necessary look-ahead arbitrarily large.

\section*{We have a full declarative scanner}
- imperative part,
- stored in the library (the third step of the algorithm)
- this is the run-time: it performs look-ahead, moves, input matching, returning tokens
- declarative part
- think of it as configuring the run-time of the scanner
- configuration done by specifying an automaton for each token
- problem: discard illegal lexemes and print an error message
- simple solution (discard char by char): add a lexeme that matches any character, giving it lowest priority; it will match when no other will

\section*{Programming the declarative scanner}
- configuring the run-time can be done by hand
- This code creates a DFA for the EQUALS token:

Node start = new Node(), middle = new Node(); Node final = new FinalNode(EQUALS): start.addEdge(middle, ' \(=\) '); middle.addEdge(final, ' \(=\) '):
- this is an improvement over the imperative scanner - more readable, maintainable, les error-prone
- but our goal is to avoid writing even this,
- we'll write a code generator
- it will translate regular expressions (our textual program) into NFA's

\section*{regular expressions}

\section*{Example: Pascal identifier}
- Lexical specification (in English):
- a letter, followed by zero or more letters or digits.
- Lexical specification (as a regular expression):
- letter . (letter | digit)*
- a compact way to define a language that can be accepted by an automaton.
- used as the input to a scanner generator
- define each token, and also
- define white-space, comments, etc
these do not correspond to tokens, but must be recognized and ignored.
```

| means "or"
. means "followed by"

* means zero or more instances of
() are used for grouping

```

Ras Bodik, CS 164, Fall 2004

\section*{Operands of a regular expression}
- Operands are same as labels on the edges of an FSM
- single characters, or
- the special character \(\varepsilon\) (the empty string)
- "letter" is a shorthand for
- \(a / b / c / \ldots / z / A / \ldots / Z\)

Precedence of I. * operators.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Regular \\
Expression \\
Operator
\end{tabular} & \begin{tabular}{c} 
Analogous \\
Arithmetic \\
Operator
\end{tabular} & Precedence \\
\hline \(\mid\) & plus & lowes \(\dagger\) \\
\hline. & times & middle \\
\hline\(\star\) & exponentiation & highes \(\dagger\) \\
\hline
\end{tabular}
- Consider regular expressions:
- letter.letter | digit*
- letter.(letter | digit)*

Ras Bodik, CS 164, Fall 2004

\section*{More examples}
- Describe (in English) the language defined by each of the following regular expressions:
- letter (letter | digit*)
- digit digit* "." digit digit*

Language Defined by a Regular Expression
- Recall: language \(=\) set of strings
- Language defined by an automaton - the set of strings accepted by the automaton
- Launguage defined by a regular expression - the set of strings that match the expression.
\begin{tabular}{|c|c|}
\hline Regular Exp. & Corresponding Set of Strings \\
\hline \(\varepsilon\) & \{""\} \\
\hline a & \{"a"\} \\
\hline a.b.c & \{"abc"\} \\
\hline \(\mathrm{a}|\mathrm{b}| \mathrm{c}\) & \{"a", "b", "c"\} \\
\hline (a|b|c)* & \{"', "a", "b", "c", "aa", "ab", ..., "bccabb" ...\} \\
\hline
\end{tabular}

\section*{Regular Expressions to NFA (1)}
- For each kind of rexp, define an NFA
- Notation: NFA for rexp M

- For \(\varepsilon\)

- For input a


Regular Expressions to NFA (2)
- For A. B

- For \(A \mid B\)


Ras Bodik, CS 164, Fall 2004

Regular Expressions to NFA (3)
- For \(A^{*}\)


\section*{Automatically translating RE's to NFA's}
- we need an AST that represents the RE
- the translation is then a bottom up traversal of the AST
- like in Java pretty printing
- options:
- properly.
- you write AST designed for RE operators
- and a parser from RE syntax to the RE AST
- in PA2, we'll reuse Java syntax and Java AST
- overload Java operators
- it's a hack, but it allows us to implement the RE-NFA translation quickly
- PA2, we'll use NFAs
- But DFAs are often faster
- because they can be implemented with tables
- Next few slides
- NFA to DFA conversion
- table implementation of DFA's
- Feel free to implement these two in PA2
- experiment with how much faster your scanner is than the NFA-based scanner


\section*{NFA to DFA. The Trick}
- Simulate the NFA
- Each state of DFA
= a non-empty subset of states of the NFA
- Start state
\(=\) the set of NFA states reachable through \(\varepsilon\)-moves from NFA start state
- Add a transition \(S \rightarrow{ }^{a} S^{\prime}\) to DFA iff
- S' is the set of NFA states reachable from the states in S after seeing the input a - considering \(\varepsilon\)-moves as well

Ras Bodik, CS 164, Fall 2004

\section*{Example of RegExp \(\rightarrow\) NFA conversion}
- Consider the regular expression
\[
(1 \mid 0)^{\star 1}
\]
- The NFA is



\section*{Implementation}
- A DFA can be implemented by a 2D table \(T\)
- One dimension is "states"
- Other dimension is "input symbols"
- For every transition \(S_{i} \rightarrow{ }^{a} S_{k}\) define \(T[i, a]=k\)
- DFA "execution"
- If in state \(S_{i}\) and input \(a\), read \(T[i, a]=k\) and skip to state \(S_{k}\)
- Very efficient

Table Implementation of a DFA

\begin{tabular}{|c|c|c|}
\hline & 0 & 1 \\
\hline\(S\) & \(T\) & \(U\) \\
\hline\(T\) & \(T\) & \(U\) \\
\hline\(U\) & \(T\) & \(U\) \\
\hline
\end{tabular}
\[
\text { Ras Bodik, CS 164, Fall } 2004
\]
```

