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Administrativia

• Extra credit for bugs in project assignments
– in starter kits and handouts
– TAs are final arbiters of what’s a bug
– only the first student to report the bug gets credit

What does a lexer do?
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Recall: The Structure of a Compiler

scanner

parser

checker

code gen

Decaf program (stream of characters)

stream of tokens

Abstract Syntax Tree (AST) 

AST with annotations (types, declarations)

maybe x86
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Recall: Lexical Analysis

• The input is just a sequence of characters.  Example:
if (i == j)

z = 0;
else

z = 1;

• More accurately, the input is string:
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

• Goal: find lexemes and map them to tokens:
1. partition input string into substrings (called lexemes), and
2. classify them according to their role (role = token)
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Continued

• Lexer input:
\tif(i==j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

• partitioned into these lexemes:
\t if ( i == j ) \n\t\t z   =   0 ; \n\t else \n\t\t z  =  1 ;

• mapped to a sequence of tokens
IF, LPAR, ID(“i”), EQUALS, ID(“j”) …

• Notes: 
– whitespace lexemes are dropped, not mapped to tokens

• is this the same fatal mistake as in FORTRAN?  (see Lecture 1)
– some tokens have attributes: the lexeme and/or line number

• why do we need them?
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What’s a Token?

• A token is a syntactic category
– In English:

noun, verb, adjective, …
– In a programming language:

Identifier, Integer, Keyword, Whitespace, …

• Parser relies on the token distinctions: 
– identifiers are treated differently than keywords
– but all identifiers are treated the same, regardless of what 

lexeme created them 
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What are lexemes?

• Webster: 
– “items in the vocabulary of a language”

• cs164: 
– same: items in the vocabulary of a language:

• numbers, keywords, identifiers, operators, etc.
– strings into which the input string is partitioned.

How to build a scanner for Decaf?
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Writing the lexer

• Not by hand
– tedious, repetitious, error-prone, non-maintainable

• Instead, we’ll build a lexer generator
– once we have the generator, we’ll only describe the 

lexemes and their tokens …
• that is, provide Decaf’s lexical specification (the What)

– … and generate code that performs the partitioning
• generated code hides repeated code (the How)
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Code generator: key benefit

The scanner generator allows the programmer 
to focus on:
• What the lexer should do,
• rather than How it should be done.

• what: declarative programming
• how: imperative programming
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Imperative scanner (in Java)

• Let’s first build the scanner in Java, by hand:
• to see how it is done, and where’s the repetitious

code that we want to hide
• A simple scanner will do.  Only four tokens:

“*”TIMES
“+”PLUS
“==“EQUALS

a sequence of one or more letters 
or digits starting with a letter

ID
LexemeTOKEN
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Imperative scanner

c=nextChar();
if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}
if (c == ‘+’) { return PLUS; }
if (c == ‘*’) { return TIMES; }
if (c is a letter) { 

c=NextChar(); 
while (c is a letter or digit) {  c=NextChar(); }
undoNextChar(c);
return ID;

}
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Imperative scanner

• You could write your entire scanner in this style
– and for small scanners this style is appropriate

• This code looks simple and clean, but try to add 
– tokens that start with the same string: “if” and “iffy”
– C-style comments: /* anything here /* nested comments */ */
– string literals with escape sequences: “…\t … \”…”
– error handling, e.g., badly formed strings (see PA2)

• Look at StreamTokenizer.nextToken() for an example 
of real imperative scanner
– in Eclipse, type Ctrl+Shift+T.
– Enter StreamTokenizer.  
– Press F4. In the Hierarchy view, select method nextToken.

Ras Bodik, CS 164, Fall 2004
15

Maximal munch rule

• What is the need for undoNextChar()?
– it performs look-ahead, to determine whether the 

ID lexeme can be grown further

• This is an example of maximal much rule:
– this rule followed by all scanners
– the rule: the input character stream is partitioned 

into lexemes that are as large as possible
– Ex.: in Java, “iffy” is not partitioned into “if” (the 

IF keyword) and “fy” (ID), but into “iffy” (ID)
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Imperative Lexer: what vs. how

c=nextChar();
if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}
if (c == ‘+’) { return PLUS; }
if (c == ‘*’) { return TIMES; }
if (c is a letter) { 

c=NextChar(); 
while (c is a letter or digit) {  c=NextChar(); }
undoNextChar(c);
return ID;

} little logic, much plumbing
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Identifying the plumbing (the how)

c=nextChar();
if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}
if (c == ‘+’) { return PLUS; }
if (c == ‘*’) { return TIMES; }
if (c is a letter) { 

c=NextChar(); 
while (c is a letter or digit) {  c=NextChar(); }
undoNextChar(c);
return ID;

} characters read always the same way
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Identifying the plumbing (the how)

c=nextChar();
if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}
if (c == ‘+’) { return PLUS; }
if (c == ‘*’) { return TIMES; }
if (c is a letter) { 

c=NextChar(); 
while (c is a letter or digit) {  c=NextChar(); }
undoNextChar(c);
return ID;

} tokens are always return-ed
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Identifying the plumbing (the how)

c=nextChar();
if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}
if (c == ‘+’) { return PLUS; }
if (c == ‘*’) { return TIMES; }
if (c is a letter) { 

c=NextChar(); 
while (c is a letter or digit) {  c=NextChar(); }
undoNextChar(c);
return ID;

} the lookahead is explicit
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Identifying the plumbing (the how)

c=nextChar();
if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}
if (c == ‘+’) { return PLUS; }
if (c == ‘*’) { return TIMES; }
if (c is a letter) { 

c=NextChar(); 
while (c is a letter or digit) {  c=NextChar(); }
undoNextChar(c);
return ID;

} must build decision tree out of nested if’s (yuck!)
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Can we hide the plumbing?

• That is, can we avoid having to 
– spell out the details of calls to the input method?
– write the return in front of tokens?
– code the look-ahead code explicitly?
– use if’s and while’s to indicate the decision tree?

• In short, can we make the code look like the 
specification table?

“*”TIMES
“+”PLUS
“==“EQUALS

a sequence of one or more letters or digits starting 
with a letter

ID
LexemeTOKEN
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Separate out the how (plumbing)

• The code actually follows a simple pattern:
– read next character and compare it with some 

predetermined character 
– if there is a match, jump to a different line of code
– repeat this until you return a token.

• Is there a programming language that can 
encode this concisely?
– yes, finite automata!

line of code line of code return 
a token

read, compare read, compare
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Separate out the what

c=nextChar();
if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}
if (c == ‘+’) { return PLUS; }
if (c == ‘*’) { return TIMES; }
if (c is a letter) { 

c=NextChar(); 
while (c is a letter or digit) {  c=NextChar(); }
undoNextChar(c);
return ID;

}
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A declarative scanner

Part 1: declarative (the what)
– describe each token as a finite automaton 

• must be supplied for each scanner, of course (it specifies 
the lexical properties of the input language)

Part 2: imperative (the how)
– connect these automata into a scanner automaton

• common to all scanners (like a library)
• responsible for the mechanics of scanning
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DFAs
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Deterministic finite automata (DFA)

• We’ll use DFA’s as recognizers:
– given an input string, the DFA will recognize whether 

the string is a valid lexeme
– “recognize” means answer true or false 
– Example: Is “xyz” an identifier?  The DFA will says yes.

• DFA’s alone insufficient to build a scanner:
– DFA’s recognize if a string is, say, an identifier
– but alone can’t partition the input program into lexemes
– so we’ll need to use them in a special way

Ras Bodik, CS 164, Fall 2004
27

Deterministic Finite Automata

• Example: Decaf Identifiers
– sequences of one or more letters or underscores or digits, 

starting with a letter or underscore:

letter | ‘_’ 
letter | ‘_’ | digit

S A
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Example: Integer Literals

• DFA that accepts integer literals with an 
optional + or - sign:

+

digit

S

B

A
-

digit
digit
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And another (more abstract) example 

• Alphabet {0,1}
• What strings does this recognize?

0

1

0

1

0

1
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Finite-Automata State Graphs

• A state

• The start state

• A final state

• A transition
a
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Finite Automata

• Transition
s1 →a s2

• Is read
In state s1 on input “a” go to state  s2

• If end of input
– If in accepting state => accept
– Otherwise => reject 

• If no transition possible (got stuck) => reject
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Formal Definition

• A finite automaton is a 5-tuple (Σ, Q, ∆, q, F)
where:
– An input alphabet Σ
– A set of states Q
– A start state q
– A set of final states F ⊆ Q
– ∆ is the state transition function: Q x Σ Q 

(i.e., encodes transitions  state →input state)
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Language defined by DFA

• The language defined by a DFA is the set of 
strings accepted by the DFA. 

– in the language of the identifier DFA shown above: 
• x, tmp2, XyZzy, position27. 

– not in the language of the identifier DFA shown 
above: 

• 123, a?, 13apples. 

the declarative scanner
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Part 1: create a DFA for each token

letter

“+”

“*”

ID:

PLUS:

TIMES:

letter | digit

“=”EQUALS: “=”
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Part 2: allow actions on DFA transitions

• the action can be one of
– "put back one character" or 
– "return token XYZ",

• such DFA is called a transducer
– it translates input string to an output string
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Step 2: example of extending a DFA

• The DFA recognizing identifiers is modified to:

• Look-ahead is added for lexemes of variable length
– in our case, only ID needs lookahead

• A note on action “return ID”
– resets the scanner back into start state S (recall that  

scanner is called by parser; each time, one token is returned)

letter
any char except 
letter or digit

letter | digit

action:
• put back 1 char
• return ID

S
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Step 2: Combine the extended DFA’s

letter

any char except 
letter or digit

letter | digit put back 1 char;
return ID

S“*”F4

F3

F1

F3

ID

return EQUALS

return TIMES

“+”return  PLUS

“=”

“=”

The algorithm: merge start nodes of the DFA’s.
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Towards a realistic scanner

• Building a scanner out of DFA’s (as shown) is simple 
but doesn’t quite work

• Consider a fifth token type, for the assignment 
operator

“+”PLUS

“=”ASSIGN

“*”TIMES

“==“EQUALS

a sequence of one or more letters or digits starting with a 
letter

ID

LexemeTOKEN
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Correct scanner

letter

any char except 
letter or digit

letter | digit put back 1 char;
return ID

S“*”
F4

F3

F1

F3

ID

return EQUALS

return TIMES

“+”return  PLUS

“=”

“=”
any char except “=”

put back 1 char; return ASSIGN
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S

But above algorithm produces 

letter

any char except 
letter or digit

letter | digit put back 1 char;
return ID“*”

F4

F3

F1

F3

return EQUALS

return TIMES

“+”return  PLUS

“=”

“=”

return ASSIGN“=”

Bad: 
• not a DFA
• should perform look-ahead
Fix it with NFA’s!

Bad: 
• not a DFA
• should perform look-ahead
Fix it with NFA’s!

NFAs
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Deterministic vs. Nondeterministic Automata

• Deterministic Finite Automata (DFA)
– one transition per input characater per state
– no ε-moves

• Nondeterministic Finite Automata (NFA)
– allows multiple outgoing transitions for one input
– can have ε-moves

• Both: finite automata have finite memory
– Need only to encode the current state
– NFA’s can be in multiple states at once (stay tuned)
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A simple NFA example

• Alphabet: { 0, 1 }

• The operation of the automaton is not 
completely defined by the input
– On input “11” the automaton could be in either state 

1

1
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Epsilon Moves

• Another kind of transition: ε-moves
ε

• Machine can move from state A to state B 
without reading input

A B
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Execution of Finite Automata

• A DFA can take only one path through the 
state graph
– Completely determined by input

• NFAs can choose
– whether to make ε-moves
– which of multiple transitions for a single input to 

take
– so we think of an NFA as being in one of multiple 

states (see next example)
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Acceptance of NFAs

• An NFA can get into multiple states

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if it can get in a final state
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NFA vs. DFA (1)

• NFA’s and DFA’s are equally powerful
– each NFA can be translated into a corresponding DFA (one 

that recognizes same strings)
– formally, NFAs and DFAs recognize the same set of languages 

(called regular languages)
• But NFA’s are more convenient

– they allow easy merges of automata, which helps in scanner 
construction

• And DFAs are easier to implement
– There are no choices to consider

• in PA2, you will use NFA’s
– we’ll give you NFA recognizer code
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NFA vs. DFA (2)

• For a given language the NFA can be simpler 
than the DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA

full declarative scanner
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The algorithm

With NFA’s, we can develop the scanner:
1. Construct an automaton for each lexeme (as before)
2. Merge them into the scanner automaton (as before)
3. Don’t extend the automata as before, instead 

• whenever you reach a final state: 
– remember position in input (so that you can undo reads)
– keep reading more characters, moving to other states

• whenever you get stuck (cannot make a move on next char):
– return to the last final state (i.e., undo the reads)
– return the token associated with this final state
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Notes

• Notice that reading past final state 
implements look-ahead

• This look-ahead is unbounded 
– can return any number of characters

• Can you think of two lexemes that will require 
the scanner to return a large amount of 
characters?
– “large” means we can write an input that will make 

the necessary look-ahead arbitrarily large.
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Practical concerns

• Ambiguity
– problem: scanner may reach multiple final states at once
– ex.: “if” matches both ID and IF (the keyword)
– solution: prioritize tokens (IF wins over ID)

• Discarding whitespace
– solution: final state for white-space lexeme is special: don’t 

return a token, but jump to (common) start state 
• Error inputs

– problem: discard illegal lexemes and print an error message
– simple solution (discard char by char): add a lexeme that 

matches any character, giving it lowest priority; it will match 
when no other will
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We have a full declarative scanner

– imperative part, 
• stored in the library (the third step of the algorithm)
• this is the run-time: it performs look-ahead, moves, input 

matching, returning tokens
– declarative part

• think of it as configuring the run-time of the scanner
• configuration done by specifying an automaton for each 

token
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Programming the declarative scanner

• configuring the run-time can be done by hand
– This code creates a DFA for the EQUALS token:

Node start = new Node(), middle = new Node();
Node final = new FinalNode(EQUALS);
start.addEdge(middle, ‘=‘); middle.addEdge(final, ‘=‘);

– this is an improvement over the imperative scanner
• more readable, maintainable, les error-prone

– but our goal is to avoid writing even this, 
• we’ll write a code generator
• it will translate regular expressions (our textual program) 

into NFA’s

regular expressions
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Regular Expressions

• Automaton is a good “visual” aid
– but is not suitable as a specification 

(its textual description is too clumsy)
• regular expressions are a suitable specification

– a compact way to define a language that can be accepted by 
an automaton. 

• used as the input to a scanner generator 
– define each token, and also
– define white-space,  comments, etc

• these do not correspond to tokens, 
but must be recognized and ignored.
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Example: Pascal identifier

• Lexical specification (in English):
– a letter, followed by zero or more letters or digits. 

• Lexical specification (as a regular expression): 
– letter . (letter | digit)*

| means "or" 
. means "followed by" 
* means zero or more instances of 
() are used for grouping 
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Operands of a regular expression

• Operands are same as labels on the edges of an FSM
– single characters, or 
– the special character ε (the empty string)

• "letter" is a shorthand for 
– a | b | c | ... | z | A | ... | Z

• "digit“ is a shorthand for 
– 0 | 1 | … | 9

• sometimes we put the characters in quotes 
– necessary when denoting  |  .  * 
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Precedence of | . * operators. 

• Consider regular expressions:
– letter.letter | digit*
– letter.(letter | digit)*

highestexponentiation*
middletimes.
lowestplus|

PrecedenceAnalogous 
Arithmetic 
Operator

Regular 
Expression 
Operator
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More examples

• Describe (in English) the language defined by 
each of the following regular expressions:

– letter (letter | digit*)

– digit digit* "." digit digit* 
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Example: Integer Literals

• An integer literal with an optional sign can be 
defined in English as: 
– “(nothing or + or -) followed by one or more digits”

• The corresponding regular expression is:
– (+|-|ε).(digit.digit*) 

• A new convenient operator ‘+’
– same precedence as ‘*’
– digit.digit*   is the same as 
– digit+   which means "one or more digits" 
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Language Defined by a Regular Expression

• Recall: language = set of strings
• Language defined by an automaton

– the set of strings accepted by the automaton
• Launguage defined by a regular expression

– the set of strings that match the expression. 

Regular  Exp. Corresponding Set of Strings
ε {""} 
a {"a"} 
a.b.c {"abc"} 
a | b | c {"a", "b", "c"} 
(a | b | c)* {"", "a", "b", "c", "aa", "ab", ..., "bccabb" ...} 
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Translating RE to NFA’s

• key idea: 
– find hierarchy in the regular expression 

• find nested RE’s
– define translation for individual operation
– compose the translations of nested RE’s

• RE’s as AST
– translation via AST traversal
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Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
– Notation: NFA for rexp M        

M

• For ε
ε

• For input a
a
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Regular Expressions to NFA (2)

• For A . B
A Bε

• For A | B

A

B

ε
ε

ε

ε
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Regular Expressions to NFA (3)

• For A*

A εε

ε

ε
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Example of RegExp -> NFA conversion

• Consider the regular expression
(1|0)*1

• The NFA is

1
0 1ε ε

ε

ε

ε

ε ε

ε

ε

A B
C

D

E

F
G H I J
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Automatically translating RE’s to NFA’s

• we need an AST that represents the RE
– the translation is then a bottom up traversal of the AST
– like in Java pretty printing

• options:
– properly, 

• you write AST designed for RE operators
• and a parser from RE syntax to the RE AST

– in PA2, we’ll reuse Java syntax and Java AST
• overload Java operators
• it’s a hack, but it allows us to implement the RE-NFA translation 

quickly

odds and ends
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Practical issues

• PA2, we’ll use NFAs
– But DFAs are often faster
– because they can be implemented with tables

• Next few slides
– NFA to DFA conversion
– table implementation of DFA’s

• Feel free to implement these two in PA2
– experiment with how much faster your scanner is 

than the NFA-based scanner
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NFA to DFA. The Trick

• Simulate the NFA
• Each state of DFA 

= a non-empty subset of states of the NFA
• Start state 

= the set of NFA states reachable through ε-moves 
from NFA start state

• Add a transition S →a S’ to DFA iff
– S’ is the set of NFA states reachable from the 

states in S after seeing the input a
• considering ε-moves as well
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NFA -> DFA Example

1
0 1ε ε

ε

ε

ε

ε

ε

ε

A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

10 1
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NFA to DFA. Remark

• An NFA may be in many states at any time

• How many different states ?

• If there are N states, the NFA must be in 
some subset of those N states

• How many non-empty subsets are there?
– 2N - 1 = finitely many
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Implementation

• A DFA can be implemented by a 2D table T
– One dimension is “states”
– Other dimension is “input symbols”
– For every transition Si →a Sk define T[i,a] = k

• DFA “execution”
– If in state Si and input a, read T[i,a] = k and skip to 

state Sk

– Very efficient
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Table Implementation of a DFA

S

T

U

0

1

0

10 1

UTU
UTT
UTS
10
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Implementation (Cont.)

• NFA -> DFA conversion is at the heart of tools 
such as flex or jlex

• But, DFAs can be huge

• In practice, flex-like tools trade off speed 
for space in the choice of NFA and DFA 
representations

the end


