
1

Ras Bodik, CS 164, Fall 2004 1

Building a Scanner

CS164, Fall 2004

Ras Bodik, CS 164, Fall 2004
2

Administrativia

• Extra credit for bugs in project assignments
– in starter kits and handouts
– TAs are final arbiters of what’s a bug
– only the first student to report the bug gets credit

What does a lexer do?

Ras Bodik, CS 164, Fall 2004
4

Recall: The Structure of a Compiler

scanner

parser

checker

code gen

Decaf program (stream of characters)

stream of tokens

Abstract Syntax Tree (AST) 

AST with annotations (types, declarations)

maybe x86

Ras Bodik, CS 164, Fall 2004
5

Recall: Lexical Analysis

• The input is just a sequence of characters.  Example:
if (i == j)

z = 0;
else

z = 1;

• More accurately, the input is string:
\tif (i == j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

• Goal: find lexemes and map them to tokens:
1. partition input string into substrings (called lexemes), and
2. classify them according to their role (role = token)

Ras Bodik, CS 164, Fall 2004
6

Continued

• Lexer input:
\tif(i==j)\n\t\tz = 0;\n\telse\n\t\tz = 1;

• partitioned into these lexemes:
\t if ( i == j ) \n\t\t z   =   0 ; \n\t else \n\t\t z  =  1 ;

• mapped to a sequence of tokens
IF, LPAR, ID(“i”), EQUALS, ID(“j”) …

• Notes: 
– whitespace lexemes are dropped, not mapped to tokens

• is this the same fatal mistake as in FORTRAN?  (see Lecture 1)
– some tokens have attributes: the lexeme and/or line number

• why do we need them?



2

Ras Bodik, CS 164, Fall 2004
7

What’s a Token?

• A token is a syntactic category
– In English:

noun, verb, adjective, …
– In a programming language:

Identifier, Integer, Keyword, Whitespace, …

• Parser relies on the token distinctions: 
– identifiers are treated differently than keywords
– but all identifiers are treated the same, regardless of what 

lexeme created them 

Ras Bodik, CS 164, Fall 2004
8

What are lexemes?

• Webster: 
– “items in the vocabulary of a language”

• cs164: 
– same: items in the vocabulary of a language:

• numbers, keywords, identifiers, operators, etc.
– strings into which the input string is partitioned.

How to build a scanner for Decaf?

Ras Bodik, CS 164, Fall 2004
10

Writing the lexer

• Not by hand
– tedious, repetitious, error-prone, non-maintainable

• Instead, we’ll build a lexer generator
– once we have the generator, we’ll only describe the 

lexemes and their tokens …
• that is, provide Decaf’s lexical specification (the What)

– … and generate code that performs the partitioning
• generated code hides repeated code (the How)

Ras Bodik, CS 164, Fall 2004
11

Code generator: key benefit

The scanner generator allows the programmer 
to focus on:
• What the lexer should do,
• rather than How it should be done.

• what: declarative programming
• how: imperative programming

Ras Bodik, CS 164, Fall 2004
12

Imperative scanner (in Java)

• Let’s first build the scanner in Java, by hand:
• to see how it is done, and where’s the repetitious

code that we want to hide
• A simple scanner will do.  Only four tokens:

“*”TIMES
“+”PLUS
“==“EQUALS

a sequence of one or more letters 
or digits starting with a letter

ID
LexemeTOKEN



3

Ras Bodik, CS 164, Fall 2004
13

Imperative scanner

c=nextChar();
if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}
if (c == ‘+’) { return PLUS; }
if (c == ‘*’) { return TIMES; }
if (c is a letter) { 

c=NextChar(); 
while (c is a letter or digit) {  c=NextChar(); }
undoNextChar(c);
return ID;

}

Ras Bodik, CS 164, Fall 2004
14

Imperative scanner

• You could write your entire scanner in this style
– and for small scanners this style is appropriate

• This code looks simple and clean, but try to add 
– tokens that start with the same string: “if” and “iffy”
– C-style comments: /* anything here /* nested comments */ */
– string literals with escape sequences: “…\t … \”…”
– error handling, e.g., badly formed strings (see PA2)

• Look at StreamTokenizer.nextToken() for an example 
of real imperative scanner
– in Eclipse, type Ctrl+Shift+T.
– Enter StreamTokenizer.  
– Press F4. In the Hierarchy view, select method nextToken.

Ras Bodik, CS 164, Fall 2004
15

Maximal munch rule

• What is the need for undoNextChar()?
– it performs look-ahead, to determine whether the 

ID lexeme can be grown further

• This is an example of maximal much rule:
– this rule followed by all scanners
– the rule: the input character stream is partitioned 

into lexemes that are as large as possible
– Ex.: in Java, “iffy” is not partitioned into “if” (the 

IF keyword) and “fy” (ID), but into “iffy” (ID)

Ras Bodik, CS 164, Fall 2004
16

Imperative Lexer: what vs. how

c=nextChar();
if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}
if (c == ‘+’) { return PLUS; }
if (c == ‘*’) { return TIMES; }
if (c is a letter) { 

c=NextChar(); 
while (c is a letter or digit) {  c=NextChar(); }
undoNextChar(c);
return ID;

} little logic, much plumbing

Ras Bodik, CS 164, Fall 2004
17

Identifying the plumbing (the how)

c=nextChar();
if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}
if (c == ‘+’) { return PLUS; }
if (c == ‘*’) { return TIMES; }
if (c is a letter) { 

c=NextChar(); 
while (c is a letter or digit) {  c=NextChar(); }
undoNextChar(c);
return ID;

} characters read always the same way

Ras Bodik, CS 164, Fall 2004
18

Identifying the plumbing (the how)

c=nextChar();
if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}
if (c == ‘+’) { return PLUS; }
if (c == ‘*’) { return TIMES; }
if (c is a letter) { 

c=NextChar(); 
while (c is a letter or digit) {  c=NextChar(); }
undoNextChar(c);
return ID;

} tokens are always return-ed



4

Ras Bodik, CS 164, Fall 2004
19

Identifying the plumbing (the how)

c=nextChar();
if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}
if (c == ‘+’) { return PLUS; }
if (c == ‘*’) { return TIMES; }
if (c is a letter) { 

c=NextChar(); 
while (c is a letter or digit) {  c=NextChar(); }
undoNextChar(c);
return ID;

} the lookahead is explicit

Ras Bodik, CS 164, Fall 2004
20

Identifying the plumbing (the how)

c=nextChar();
if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}
if (c == ‘+’) { return PLUS; }
if (c == ‘*’) { return TIMES; }
if (c is a letter) { 

c=NextChar(); 
while (c is a letter or digit) {  c=NextChar(); }
undoNextChar(c);
return ID;

} must build decision tree out of nested if’s (yuck!)

Ras Bodik, CS 164, Fall 2004
21

Can we hide the plumbing?

• That is, can we avoid having to 
– spell out the details of calls to the input method?
– write the return in front of tokens?
– code the look-ahead code explicitly?
– use if’s and while’s to indicate the decision tree?

• In short, can we make the code look like the 
specification table?

“*”TIMES
“+”PLUS
“==“EQUALS

a sequence of one or more letters or digits starting 
with a letter

ID
LexemeTOKEN

Ras Bodik, CS 164, Fall 2004
22

Separate out the how (plumbing)

• The code actually follows a simple pattern:
– read next character and compare it with some 

predetermined character 
– if there is a match, jump to a different line of code
– repeat this until you return a token.

• Is there a programming language that can 
encode this concisely?
– yes, finite automata!

line of code line of code return 
a token

read, compare read, compare

Ras Bodik, CS 164, Fall 2004
23

Separate out the what

c=nextChar();
if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}
if (c == ‘+’) { return PLUS; }
if (c == ‘*’) { return TIMES; }
if (c is a letter) { 

c=NextChar(); 
while (c is a letter or digit) {  c=NextChar(); }
undoNextChar(c);
return ID;

}

Ras Bodik, CS 164, Fall 2004
24

A declarative scanner

Part 1: declarative (the what)
– describe each token as a finite automaton 

• must be supplied for each scanner, of course (it specifies 
the lexical properties of the input language)

Part 2: imperative (the how)
– connect these automata into a scanner automaton

• common to all scanners (like a library)
• responsible for the mechanics of scanning



5

DFAs

Ras Bodik, CS 164, Fall 2004
26

Deterministic finite automata (DFA)

• We’ll use DFA’s as recognizers:
– given an input string, the DFA will recognize whether 

the string is a valid lexeme
– “recognize” means answer true or false 
– Example: Is “xyz” an identifier?  The DFA will says yes.

• DFA’s alone insufficient to build a scanner:
– DFA’s recognize if a string is, say, an identifier
– but alone can’t partition the input program into lexemes
– so we’ll need to use them in a special way

Ras Bodik, CS 164, Fall 2004
27

Deterministic Finite Automata

• Example: Decaf Identifiers
– sequences of one or more letters or underscores or digits, 

starting with a letter or underscore:

letter | ‘_’ 
letter | ‘_’ | digit

S A

Ras Bodik, CS 164, Fall 2004
28

Example: Integer Literals

• DFA that accepts integer literals with an 
optional + or - sign:

+

digit

S

B

A
-

digit
digit

Ras Bodik, CS 164, Fall 2004
29

And another (more abstract) example 

• Alphabet {0,1}
• What strings does this recognize?

0

1

0

1

0

1

Ras Bodik, CS 164, Fall 2004
30

Finite-Automata State Graphs

• A state

• The start state

• A final state

• A transition
a



6

Ras Bodik, CS 164, Fall 2004
31

Finite Automata

• Transition
s1 →a s2

• Is read
In state s1 on input “a” go to state  s2

• If end of input
– If in accepting state => accept
– Otherwise => reject 

• If no transition possible (got stuck) => reject

Ras Bodik, CS 164, Fall 2004
32

Formal Definition

• A finite automaton is a 5-tuple (Σ, Q, ∆, q, F)
where:
– An input alphabet Σ
– A set of states Q
– A start state q
– A set of final states F ⊆ Q
– ∆ is the state transition function: Q x Σ Q 

(i.e., encodes transitions  state →input state)

Ras Bodik, CS 164, Fall 2004
33

Language defined by DFA

• The language defined by a DFA is the set of 
strings accepted by the DFA. 

– in the language of the identifier DFA shown above: 
• x, tmp2, XyZzy, position27. 

– not in the language of the identifier DFA shown 
above: 

• 123, a?, 13apples. 

the declarative scanner

Ras Bodik, CS 164, Fall 2004
35

Part 1: create a DFA for each token

letter

“+”

“*”

ID:

PLUS:

TIMES:

letter | digit

“=”EQUALS: “=”

Ras Bodik, CS 164, Fall 2004
36

Part 2: allow actions on DFA transitions

• the action can be one of
– "put back one character" or 
– "return token XYZ",

• such DFA is called a transducer
– it translates input string to an output string



7

Ras Bodik, CS 164, Fall 2004
37

Step 2: example of extending a DFA

• The DFA recognizing identifiers is modified to:

• Look-ahead is added for lexemes of variable length
– in our case, only ID needs lookahead

• A note on action “return ID”
– resets the scanner back into start state S (recall that  

scanner is called by parser; each time, one token is returned)

letter
any char except 
letter or digit

letter | digit

action:
• put back 1 char
• return ID

S

Ras Bodik, CS 164, Fall 2004
38

Step 2: Combine the extended DFA’s

letter

any char except 
letter or digit

letter | digit put back 1 char;
return ID

S“*”F4

F3

F1

F3

ID

return EQUALS

return TIMES

“+”return  PLUS

“=”

“=”

The algorithm: merge start nodes of the DFA’s.

Ras Bodik, CS 164, Fall 2004
39

Towards a realistic scanner

• Building a scanner out of DFA’s (as shown) is simple 
but doesn’t quite work

• Consider a fifth token type, for the assignment 
operator

“+”PLUS

“=”ASSIGN

“*”TIMES

“==“EQUALS

a sequence of one or more letters or digits starting with a 
letter

ID

LexemeTOKEN

Ras Bodik, CS 164, Fall 2004
40

Correct scanner

letter

any char except 
letter or digit

letter | digit put back 1 char;
return ID

S“*”
F4

F3

F1

F3

ID

return EQUALS

return TIMES

“+”return  PLUS

“=”

“=”
any char except “=”

put back 1 char; return ASSIGN

Ras Bodik, CS 164, Fall 2004
41

S

But above algorithm produces 

letter

any char except 
letter or digit

letter | digit put back 1 char;
return ID“*”

F4

F3

F1

F3

return EQUALS

return TIMES

“+”return  PLUS

“=”

“=”

return ASSIGN“=”

Bad: 
• not a DFA
• should perform look-ahead
Fix it with NFA’s!

Bad: 
• not a DFA
• should perform look-ahead
Fix it with NFA’s!

NFAs



8

Ras Bodik, CS 164, Fall 2004
43

Deterministic vs. Nondeterministic Automata

• Deterministic Finite Automata (DFA)
– one transition per input characater per state
– no ε-moves

• Nondeterministic Finite Automata (NFA)
– allows multiple outgoing transitions for one input
– can have ε-moves

• Both: finite automata have finite memory
– Need only to encode the current state
– NFA’s can be in multiple states at once (stay tuned)

Ras Bodik, CS 164, Fall 2004
44

A simple NFA example

• Alphabet: { 0, 1 }

• The operation of the automaton is not 
completely defined by the input
– On input “11” the automaton could be in either state 

1

1

Ras Bodik, CS 164, Fall 2004
45

Epsilon Moves

• Another kind of transition: ε-moves
ε

• Machine can move from state A to state B 
without reading input

A B

Ras Bodik, CS 164, Fall 2004
46

Execution of Finite Automata

• A DFA can take only one path through the 
state graph
– Completely determined by input

• NFAs can choose
– whether to make ε-moves
– which of multiple transitions for a single input to 

take
– so we think of an NFA as being in one of multiple 

states (see next example)

Ras Bodik, CS 164, Fall 2004
47

Acceptance of NFAs

• An NFA can get into multiple states

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if it can get in a final state

Ras Bodik, CS 164, Fall 2004
48

NFA vs. DFA (1)

• NFA’s and DFA’s are equally powerful
– each NFA can be translated into a corresponding DFA (one 

that recognizes same strings)
– formally, NFAs and DFAs recognize the same set of languages 

(called regular languages)
• But NFA’s are more convenient

– they allow easy merges of automata, which helps in scanner 
construction

• And DFAs are easier to implement
– There are no choices to consider

• in PA2, you will use NFA’s
– we’ll give you NFA recognizer code



9

Ras Bodik, CS 164, Fall 2004
49

NFA vs. DFA (2)

• For a given language the NFA can be simpler 
than the DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA

full declarative scanner

Ras Bodik, CS 164, Fall 2004
51

The algorithm

With NFA’s, we can develop the scanner:
1. Construct an automaton for each lexeme (as before)
2. Merge them into the scanner automaton (as before)
3. Don’t extend the automata as before, instead 

• whenever you reach a final state: 
– remember position in input (so that you can undo reads)
– keep reading more characters, moving to other states

• whenever you get stuck (cannot make a move on next char):
– return to the last final state (i.e., undo the reads)
– return the token associated with this final state

Ras Bodik, CS 164, Fall 2004
52

Notes

• Notice that reading past final state 
implements look-ahead

• This look-ahead is unbounded 
– can return any number of characters

• Can you think of two lexemes that will require 
the scanner to return a large amount of 
characters?
– “large” means we can write an input that will make 

the necessary look-ahead arbitrarily large.

Ras Bodik, CS 164, Fall 2004
53

Practical concerns

• Ambiguity
– problem: scanner may reach multiple final states at once
– ex.: “if” matches both ID and IF (the keyword)
– solution: prioritize tokens (IF wins over ID)

• Discarding whitespace
– solution: final state for white-space lexeme is special: don’t 

return a token, but jump to (common) start state 
• Error inputs

– problem: discard illegal lexemes and print an error message
– simple solution (discard char by char): add a lexeme that 

matches any character, giving it lowest priority; it will match 
when no other will

Ras Bodik, CS 164, Fall 2004
54

We have a full declarative scanner

– imperative part, 
• stored in the library (the third step of the algorithm)
• this is the run-time: it performs look-ahead, moves, input 

matching, returning tokens
– declarative part

• think of it as configuring the run-time of the scanner
• configuration done by specifying an automaton for each 

token



10

Ras Bodik, CS 164, Fall 2004
55

Programming the declarative scanner

• configuring the run-time can be done by hand
– This code creates a DFA for the EQUALS token:

Node start = new Node(), middle = new Node();
Node final = new FinalNode(EQUALS);
start.addEdge(middle, ‘=‘); middle.addEdge(final, ‘=‘);

– this is an improvement over the imperative scanner
• more readable, maintainable, les error-prone

– but our goal is to avoid writing even this, 
• we’ll write a code generator
• it will translate regular expressions (our textual program) 

into NFA’s

regular expressions

Ras Bodik, CS 164, Fall 2004
57

Regular Expressions

• Automaton is a good “visual” aid
– but is not suitable as a specification 

(its textual description is too clumsy)
• regular expressions are a suitable specification

– a compact way to define a language that can be accepted by 
an automaton. 

• used as the input to a scanner generator 
– define each token, and also
– define white-space,  comments, etc

• these do not correspond to tokens, 
but must be recognized and ignored.

Ras Bodik, CS 164, Fall 2004
58

Example: Pascal identifier

• Lexical specification (in English):
– a letter, followed by zero or more letters or digits. 

• Lexical specification (as a regular expression): 
– letter . (letter | digit)*

| means "or" 
. means "followed by" 
* means zero or more instances of 
() are used for grouping 

Ras Bodik, CS 164, Fall 2004
59

Operands of a regular expression

• Operands are same as labels on the edges of an FSM
– single characters, or 
– the special character ε (the empty string)

• "letter" is a shorthand for 
– a | b | c | ... | z | A | ... | Z

• "digit“ is a shorthand for 
– 0 | 1 | … | 9

• sometimes we put the characters in quotes 
– necessary when denoting  |  .  * 

Ras Bodik, CS 164, Fall 2004
60

Precedence of | . * operators. 

• Consider regular expressions:
– letter.letter | digit*
– letter.(letter | digit)*

highestexponentiation*
middletimes.
lowestplus|

PrecedenceAnalogous 
Arithmetic 
Operator

Regular 
Expression 
Operator



11

Ras Bodik, CS 164, Fall 2004
61

More examples

• Describe (in English) the language defined by 
each of the following regular expressions:

– letter (letter | digit*)

– digit digit* "." digit digit* 

Ras Bodik, CS 164, Fall 2004
62

Example: Integer Literals

• An integer literal with an optional sign can be 
defined in English as: 
– “(nothing or + or -) followed by one or more digits”

• The corresponding regular expression is:
– (+|-|ε).(digit.digit*) 

• A new convenient operator ‘+’
– same precedence as ‘*’
– digit.digit*   is the same as 
– digit+   which means "one or more digits" 

Ras Bodik, CS 164, Fall 2004
63

Language Defined by a Regular Expression

• Recall: language = set of strings
• Language defined by an automaton

– the set of strings accepted by the automaton
• Launguage defined by a regular expression

– the set of strings that match the expression. 

Regular  Exp. Corresponding Set of Strings
ε {""} 
a {"a"} 
a.b.c {"abc"} 
a | b | c {"a", "b", "c"} 
(a | b | c)* {"", "a", "b", "c", "aa", "ab", ..., "bccabb" ...} 

Ras Bodik, CS 164, Fall 2004
64

Translating RE to NFA’s

• key idea: 
– find hierarchy in the regular expression 

• find nested RE’s
– define translation for individual operation
– compose the translations of nested RE’s

• RE’s as AST
– translation via AST traversal

Ras Bodik, CS 164, Fall 2004
65

Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
– Notation: NFA for rexp M        

M

• For ε
ε

• For input a
a

Ras Bodik, CS 164, Fall 2004
66

Regular Expressions to NFA (2)

• For A . B
A Bε

• For A | B

A

B

ε
ε

ε

ε



12

Ras Bodik, CS 164, Fall 2004
67

Regular Expressions to NFA (3)

• For A*

A εε

ε

ε

Ras Bodik, CS 164, Fall 2004
68

Example of RegExp -> NFA conversion

• Consider the regular expression
(1|0)*1

• The NFA is

1
0 1ε ε

ε

ε

ε

ε ε

ε

ε

A B
C

D

E

F
G H I J

Ras Bodik, CS 164, Fall 2004
69

Automatically translating RE’s to NFA’s

• we need an AST that represents the RE
– the translation is then a bottom up traversal of the AST
– like in Java pretty printing

• options:
– properly, 

• you write AST designed for RE operators
• and a parser from RE syntax to the RE AST

– in PA2, we’ll reuse Java syntax and Java AST
• overload Java operators
• it’s a hack, but it allows us to implement the RE-NFA translation 

quickly

odds and ends

Ras Bodik, CS 164, Fall 2004
71

Practical issues

• PA2, we’ll use NFAs
– But DFAs are often faster
– because they can be implemented with tables

• Next few slides
– NFA to DFA conversion
– table implementation of DFA’s

• Feel free to implement these two in PA2
– experiment with how much faster your scanner is 

than the NFA-based scanner

Ras Bodik, CS 164, Fall 2004
72

NFA to DFA. The Trick

• Simulate the NFA
• Each state of DFA 

= a non-empty subset of states of the NFA
• Start state 

= the set of NFA states reachable through ε-moves 
from NFA start state

• Add a transition S →a S’ to DFA iff
– S’ is the set of NFA states reachable from the 

states in S after seeing the input a
• considering ε-moves as well



13

Ras Bodik, CS 164, Fall 2004
73

NFA -> DFA Example

1
0 1ε ε

ε

ε

ε

ε

ε

ε

A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

10 1

Ras Bodik, CS 164, Fall 2004
74

NFA to DFA. Remark

• An NFA may be in many states at any time

• How many different states ?

• If there are N states, the NFA must be in 
some subset of those N states

• How many non-empty subsets are there?
– 2N - 1 = finitely many

Ras Bodik, CS 164, Fall 2004
75

Implementation

• A DFA can be implemented by a 2D table T
– One dimension is “states”
– Other dimension is “input symbols”
– For every transition Si →a Sk define T[i,a] = k

• DFA “execution”
– If in state Si and input a, read T[i,a] = k and skip to 

state Sk

– Very efficient

Ras Bodik, CS 164, Fall 2004
76

Table Implementation of a DFA

S

T

U

0

1

0

10 1

UTU
UTT
UTS
10

Ras Bodik, CS 164, Fall 2004
77

Implementation (Cont.)

• NFA -> DFA conversion is at the heart of tools 
such as flex or jlex

• But, DFAs can be huge

• In practice, flex-like tools trade off speed 
for space in the choice of NFA and DFA 
representations

the end


