Local Optimizations

Lecture 21
Lecture Outline

• Local optimization

• Next time: global optimizations
Code Generation Summary

• We have discussed
 - Runtime organization
 - Simple stack machine code generation

• Our compiler goes directly from AST to assembly language with a brief stop or two
 - If we preserved environment data from typecheck, use that;
 - cleanup other minor loose ends perhaps.
 - Simple-compile.lisp does not perform optimizations

• Most real compilers use some optimization somewhere (history of Fortran I..)
When to perform optimizations

- **On AST**
 - **Pro:** Machine independent
 - **Con:** Too high level

- **On assembly language**
 - **Pro:** Exposes more optimization opportunities
 - **Con:** Machine dependent
 - **Con:** Must reimplement optimizations when retargetting

- **On an intermediate language between AST and assembler**
 - **Pro:** Machine independent
 - **Pro:** Exposes many optimization opportunities
Intermediate Languages for Optimization

• Each compiler uses its own intermediate language
 - IL design is still an active area of research
• Intermediate language = high-level assembly language
 - Uses register names, but has an unlimited number
 - Uses control structures like assembly language
 - Uses opcodes but some are higher level
 • E.g., push may translate to several assembly instructions
 • Perhaps some opcodes correspond directly to assembly opcodes
• Usually not stack oriented.
Texts often consider optimizing based on Three-Address Intermediate Code

- Computations are reduced to simple forms like
 \[x := y \text{ op } z \] [3 addresses]
or maybe \[x := \text{ op } y \]
 - \(y \) and \(z \) can be only registers or constants (not expressions!)
 - Also need control flow test/jump/call/
- New variables are generated, perhaps to be used only once (SSA = static single assignment)
- The expression \(x + y \ast z \) is translated as
 \[t_1 := y \ast z \]
 \[t_2 := x + t_1 \]
 - Each subexpression then has a “home” for its value
How hard to generate this kind of Intermediate Code?

• Similar technique to our assembly code generation

• Major differences
 - Use any number of IL registers to hold intermediate results
 - Not stack oriented

• Same compiler organization..
Generating Intermediate Code (Cont.)

- **Igen(e, t)** function generates code to compute the value of e in register t
- **Example:**
 \[
 \text{igen}(e_1 + e_2, t) = \\
 \text{igen}(e_1, t_1) ; (t_1 \text{ is a fresh register}) \\
 \text{igen}(e_2, t_2) ; (t_2 \text{ is a fresh register}) \\
 t := t_1 + t_2 ; (\text{instead of } “+”) \\
 \]
- **Unlimited number of registers** ⇒ simple code generation
We can define an Intermediate Language formally, too...

P → S ; P | ε
S → id := id op id
 | id := op id
 | id := id
 | push id
 | id := pop
 | if id relop id goto L
 | L:
 | jump L

• id’s are register names
• Constants can replace id’s
• Typical operators: +, -, *

• id’s are register names
• Constants can replace id’s
• Typical operators: +, -, *

Prof. Fateman CS164 Lecture 21 9
Optimization Concepts

- Inside Basic Blocks
- Between/Around Basic Blocks: Control Flow Graphs
Definition. Basic Blocks

- A **basic block** is a maximal sequence of instructions with:
 - no labels (except at the first instruction), and
 - no jumps (except in the last instruction)

- **Idea:**
 - Cannot jump into a basic block (except at beginning)
 - Cannot jump out of a basic block (except at end)
 - Each instruction in a basic block is executed after all the preceding instructions have been executed
Basic Block Example

• Consider the basic block
 1. L:
 2. \(t := 2 \times x \)
 3. \(w := t + x \)
 4. if \(w > 0 \) goto L

• No way for (3) to be executed without (2) having been executed right before
 - We can change (3) to \(w := 3 \times x \)
 - Can we eliminate (2) as well?
Definition. Control-Flow Graphs

- A control-flow graph is a directed graph with
 - Basic blocks as nodes
 - An edge from block A to block B if the execution can flow from the last instruction in A to the first instruction in B
 - E.g., the last instruction in A is \texttt{jump L}_B
 - E.g., the execution can fall through from block A to block B

- Frequently abbreviated as CFG ... too bad we already used this..
Control-Flow Graphs. Example.

- The body of a method (or procedure) can be represented as a control-flow graph
- There is one initial node
- All “return” nodes are terminal

```plaintext
x := 1
i := 1

L:
x := x * x
i := i + 1
if i < 10 goto L
```
Optimization Overview

- Optimization seeks to improve a program’s utilization of some resource
 - Execution time (most often) [instructions, memory access]
 - Code size
 - Network messages sent,
 - Battery power used, etc.

- Optimization should not alter what the program computes
 - The answers must still be the same (* sometimes relaxed for floating point numbers... a bad idea, though)
 - Same behavior on bad input (?) e.g. array bounds?
A Classification of Optimizations

• For languages like Java there are three granularities of optimizations
 1. Local optimizations
 • Apply to a basic block in isolation
 2. Global optimizations
 • Apply to a control-flow graph (function body) in isolation
 3. Inter-procedural optimizations
 • Apply across call boundaries
• Most compilers do (1), many do (2) and very few do (3)
Cost of Optimizations

• In practice, a conscious decision is often not to implement the fanciest optimization known

• Why?
 – Some optimizations are hard to implement. Programs are tricky to write/debug
 – Some optimizations are costly in terms of compilation time. Even exponential time $O(2^s)$, for program of size s.
 – Some fancy optimizations are both hard and costly!

• Depends on goal:
 – maximum improvement with acceptable cost / debuggability
 – vs. beat competitive benchmarks
Local Optimizations

- The simplest form of optimizations
- No need to analyze the whole procedure body
 - Just the basic block in question

- Example: algebraic simplification
Algebraic Simplification

- Some statements can be deleted
 \[x := x + 0 \]
 \[x := x \times 1 \]

- Some statements can be simplified
 \[x := x \times 0 \quad \Rightarrow \quad x := 0 \quad ;;x \text{ not "infinity" or NaN} \]
 \[y := y^2 \quad \Rightarrow \quad y := y \times y \]
 \[x := x \times 8 \quad \Rightarrow \quad x := x \ll 3 \]
 \[x := x \times 15 \quad \Rightarrow \quad t := x \ll 4; x := t - x \]
 (on some machines \(\ll \) is faster than \(\times \); but not on all!)
Constant Folding

- Operations on constants can be computed at compile time.
- In general, if there is a statement
 \[x := y \text{ op } z \]
 - And \(y \) and \(z \) are constants (and \(\text{op} \) has no side effects)
 - Then \(y \text{ op } z \) can be computed at compile time [if you are computing on the same machine, at least. Eg. 32 vs 64 bit?]
- Example: \(x := 2 + 2 \Rightarrow x := 4 \)
- Example: \(\text{if } 2 < 0 \text{ jump L} \) can be deleted
- When might constant folding be dangerous?
- Why would anyone write such stupid code?
Flow of Control Optimizations

• Eliminating unreachable code:
 - Code that is unreachable in the control-flow graph
 - Basic blocks that are not the target of any jump or “fall through” from a conditional
 - Such basic blocks can be eliminated

• Why would such basic blocks occur?

• Removing unreachable code makes the program smaller
 - And sometimes also faster
 • Due to memory cache effects (increased spatial locality)
Using (Static) Single Assignment Form SSA

• Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment.
• Intermediate code can be rewritten to be in single assignment form.
 \[
 \begin{align*}
 x & := z + y & b & := z + y \\
 a & := x & \Rightarrow & a & := b \\
 x & := 2 \times x & x & := 2 \times b \\
 (b & \text{ is a fresh register})
 \end{align*}
 \]
• More complicated in general, due to loops.
Common Subexpression Elimination

- Assume
 - Basic block is in single assignment form
 - A definition \(x := \) is the first use of \(x \) in a block
- All assignments with same rhs compute the same value
- Example:

\[
\begin{align*}
 x &:= y + z \\
 \ldots &\quad \Rightarrow \quad \ldots \\
 w &:= y + z \\
\end{align*}
\]

\(w := x \)

(the values of \(x, y, \) and \(z \) do not change in the \(\ldots \) code)
Copy Propagation

• If \(w := x \) appears in a block, all subsequent uses of \(w \) can be replaced with uses of \(x \)

• Example:

\[
\begin{align*}
 b &:= z + y \\
 a &:= b \\
 x &:= 2 \times a
\end{align*}
\]

\[
\begin{align*}
 b &:= z + y \\
 a &:= b \\
 x &:= 2 \times b
\end{align*}
\]

• This does not make the program smaller or faster but might enable other optimizations
 - Constant folding
 - Dead code elimination
Copy Propagation and Constant Folding

• Example:

 \[
 \begin{align*}
 a & := 5 \\
 x & := 2 * a \\
 y & := x + 6 \\
 t & := x * y \\
 \end{align*}
 \]

 ⇒

 \[
 \begin{align*}
 a & := 5 \\
 x & := 10 \\
 y & := 16 \\
 t & := x << 4 \\
 \end{align*}
 \]
Copy Propagation and Dead Code Elimination

If

\[w := \text{rhs} \text{ appears (in a basic block)} \]
\[w \text{ does not appear anywhere else in the program} \]

Then

the statement \(w := \text{rhs} \) is dead and can be eliminated
- \(\text{Dead} = \) does not contribute to the program’s result

Example: (\(a \) is not used anywhere else)

\[
\begin{align*}
 x := z + y & \quad \Rightarrow \quad a := b \quad \Rightarrow \quad x := 2 * b \\
 a := x & \Rightarrow \quad a := b \quad \Rightarrow \quad x := 2 * b \\
 x := 2 * x & \quad x := 2 * b
\end{align*}
\]
Applying Local Optimizations

• Each local optimization does very little by itself
• Often the optimization seems silly “who would write code like that?” Answer: the optimizer, in a previous step! That is: typically optimizations interact so that performing one optimization enables other opts.
• Typical optimizing compilers repeatedly perform optimizations until no more improvement is produced.
• The optimizer can also be stopped at any time to limit the compilation time
An Example

• **Initial code:**

 \[
 \begin{align*}
 a & := x^2 \\
 b & := 3 \\
 c & := x \\
 d & := c \times c \\
 e & := b \times 2 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

• Algebraic optimization:

 \[
 a := x ^ 2 \\
 b := 3 \\
 c := x \\
 d := c * c \\
 e := b * 2 \\
 f := a + d \\
 g := e * f
 \]
An Example

- **Algebraic optimization:**

  ```plaintext
  a := x * x
  b := 3
  c := x
  d := c * c
  e := b << 1
  f := a + d
  g := e * f
  ```
An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := c * c
 e := b << 1
 f := a + d
 g := e * f
An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 << 1
 f := a + d
 g := e * f
An Example

• **Constant folding:**

 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 << 1
 f := a + d
 g := e * f
An Example

• **Constant folding:**

  ```
  a := x * x  
b := 3  
c := x  
d := x * x  
e := 6  
f := a + d  
g := e * f
  ```
An Example

- **Common subexpression elimination:**
 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := x \times x \\
 e & := 6 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

- *Common subexpression elimination:*

 \[a := x \times x \]
 \[b := 3 \]
 \[c := x \]
 \[d := a \]
 \[e := 6 \]
 \[f := a + d \]
 \[g := e \times f \]
An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f
An Example

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f
An Example

- **Dead code elimination:**

  ```
  a := x * x
  b := 3
  c := x
  d := a
  e := 6
  f := a + a
  g := 6 * f
  ```
An Example

• Dead code elimination:
 \[
 a := x \cdot x
 \]
 \[
 f := a + a
 \]
 \[
 g := 6 \cdot f
 \]

• This is the final form
Peephole Optimizations on Assembly Code

• The optimizations presented before work on intermediate code
 - They are target independent
 - But they can be applied on assembly language also

• Peephole optimization is an effective technique for improving assembly code
 - The “peephole” is a short sequence of (usually contiguous) instructions
 - The optimizer replaces the sequence with another equivalent one (but faster)
Peephole Optimizations (Cont.)

• Write peephole optimizations as replacement rules

\[i_1, \ldots, i_n \rightarrow j_1, \ldots, j_m \]
where the rhs is the improved version of the lhs

• Example:

 move a b, move b $a \rightarrow$ move a b

 - Works if move b a is not the target of a jump

• Another example

 addiu a a i, addiu a a j \rightarrow addiu a a i+j
Peephole Optimizations (Cont.)

• Many (but not all) of the basic block optimizations can be cast as peephole optimizations
 - Example: `addiu $a $b 0 → move $a $b`
 - Example: `move $a $a →`
 - These two together eliminate `addiu $a $a 0`

• Just as with other local optimizations, peephole optimizations need to be applied repeatedly to get maximum effect
Local Optimizations. Notes.

• Intermediate code is helpful for many optimizations
• Many simple optimizations can still be applied on assembly language
• “Program optimization” is grossly misnamed
 – Code produced by “optimizers” is not optimal in any reasonable sense
 – “Program improvement” is a more appropriate term
• Next time: global optimizations