Due: Monday, 2 October 2006

New instructions about homework. I'm switching to using a separate repository for homework. Check out homework framework with the command:

```
svn checkout svn+ssh://cs61b-tb@{\it HOST\/}/_hw/{\it LOGIN}
```

where LOGIN is your instructional login. Submit homework by committing the hw3 subdirectory.

Unless the problem specifies otherwise, please put your solutions in a file named hw3.txt in your hw3 subdirectory.

1. [From Aho, Sethi, Ullman] Indicate what language is described by each of the following grammars. In each case, S is the only non-terminal. Some symbols are quoted to make it clear that they are terminals.
a. $\mathrm{S} \rightarrow 0 \mathrm{~S} 1 \mid 01$
b. $\mathrm{S} \rightarrow+\mathrm{S} S|-\mathrm{S} S| \mathrm{a}$
c. $S \rightarrow S$ " ("S ") " $S \mid \epsilon$
d. $S \rightarrow$ aSbS \mid bS aS $\mid \epsilon$
e. $S \rightarrow a|S+S| S S|S " *| "(" S ") "$
2. Identify each ambiguous grammar in problem 1 above, and give an unambiguous grammar that recognizes the same language (any such grammar-don't worry about associativity or precedence, since there are no semantic actions.)
3. For 1d above, give two distinct leftmost derivations for the string $a b a b$. For each derivation, show the corresponding parse tree and the rightmost derivation for that same parse tree.
4. [From Aho, Sethi, Ullman] Show that all binary (base 2) numerals produced by the following grammar denote numbers that are divisible by 3 :

$$
\mathrm{N} \rightarrow 11|1001| \mathrm{N} 0 \mid \mathrm{N} \mathrm{~N}
$$

Does this grammar generate all non-negative binary numerals that are divisible by 3 ?
5. A context-free grammar is regular if every production has either the form $A \rightarrow x B$, or the form $A \rightarrow x$, where A and B are non-terminals and x is a string of 0 or more terminal symbols. Show that the language described by any such grammar can be recognized by a NDFA (hence the term regular).
6. [From Aho, Sethi, Ullman] Try to design a context-free grammar for each of the following languages (it is not always possible). Whenever possible, make it a regular grammar.
a. The set of all strings of 0 's and 1 's where every 0 is immediately followed by at least one 1.
b. Strings of 0's and 1's with an equal number of 0's and 1's.
c. Strings of 0 's and 1 's with an unequal number of 0 's and 1 's.
d. Strings of 0 's and 1's that do not contain the substring 011.
e. Strings of 0 's and 1's of the form $x y$ where x and y are equal-length strings and $x \neq y$.
f. Strings of 0 's and 1's of the form $x x$.
7. Write a BNF grammar describing the language of boolean expressions whose value is true. The terminal symbols are ' 1 ' (true), ' 0 ' (false), ' $*$ ' (logical and), '+' (logical or), unary '-' (logical not) and left and right parentheses (for grouping). Assume the usual precedence rules, with logical "not" having highest precedence. That is, $1,1 * 1,1+0,1 * 1 *-(0+1 * 0)$, and -0 are all in the language, while $0,0+0$, prog $-0^{*} 1-$, and $1 * 1 *(0+1 * 0)$ are not. Your grammar may be ambiguous (that is, you may specify operator precedence and associativity separately). Put your solution in a file $7 . y$. Start with the skeleton in $7 . y$ in the files for this homework assignment.
8. Consider the following ambiguous grammar:

```
prog \(\rightarrow \epsilon\)
prog \(\rightarrow\) expr ';'
expr \(\rightarrow\) ID
expr \(\rightarrow\) expr '-' expr
expr \(\rightarrow\) expr '/' expr
expr \(\rightarrow\) expr '?' expr ':' expr
expr \(\rightarrow\) '(' expr ')'
```

The start symbol is prog; ID and the quoted characters are the terminals.
a. Produce an (improper) LL(1) parsing table for this grammar. Since it is ambiguous, some slots will have more than one production; list all of them. Show the FIRST and FOLLOW sets.
b. Modify the grammar to be $\operatorname{LL}(1)$ and repeat part a with it.

In this case, we're just interested in recognizing the language, so don't worry about preserving precedence and associativity.

