
CS 164, Fall 2006 CS 164: Homework #5 P. N. Hilfinger

Due: Monday, 20 November 2006

General instructions about homework. Check out the homework framework with
the command:

svn checkout svn+ssh://cs164-tb@HOST/_hw/LOGIN

where LOGIN is your instructional login. If you’ve already done this, use svn update from
within your working copy of the homework directory to update with a hw5 subdirectory.
Fill in the skeleton file(s) in that subdirectory and commit it to hand in homework.

1. The Algol 68 language introduced an expression called the case conformity clause.
Here’s one version of it:

case I = E0 in T1: E1; T2: E2; ...; Tn: En; esac

where the Ei are expressions (i.e., with values), I is an identifier, and the Ti are types. The
idea here is that the program first evaluates E0, and assigns I its value. If the dynamic
type of I is Ti (or a subtype of it) for some i, the program evaluates Ei and yields its
value as the value of the entire clause. If more than one Ti fits, the program chooses one
arbitrarily and evaluates it. The problem is come up with a typing rule for this expression.
That is, we want to know what goes above the line in

O ` case I = E0 in T1: E1; T2: E2; . . . ; Tn: En; esac : T0

to make a sound rule. There is no need to know the rest of this language to do this.

2. In Java, the following is legal:

String[] Y;

Object[] X;

...

X = Y;

That is, an array of T1 may be assigned to a variable of type array-of-T2 as long as T1 is a
subtype of T2. As it turns out, this rule is unsound in the sense that because of it, certain
type errors can only be discovered at execution time, requiring a (somewhat) expensive
check that slows down some operations. Give an example of how this can happen (by
which I mean an actual Java program).

1

Homework #5 2

3. I produced the following program using gcc -S foo.c.

.globl f

.type f, @function

f:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl $0, -4(%ebp)

movl $0, -8(%ebp)

jmp .L2

.L3:

movl -8(%ebp), %eax

sall $2, %eax

addl 8(%ebp), %eax

movl (%eax), %eax

addl %eax, -4(%ebp)

incl -8(%ebp)

.L2:

movl -8(%ebp), %eax

cmpl 12(%ebp), %eax

jl .L3

movl -4(%ebp), %eax

leave

ret

Produce a plausible definition (in C) of function f, one that might have produced this
output. The function does return a value.

