
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger

Fall 2006

Project #1: Lexer for Pyth

Due: Friday, 22 September 2006 at 2359

This first project calls for writing a lexical analyzer (“lexer”) for our Python dialect
(Pyth). You will use this lexer in the next project (a parser). In order to test your work,
you’ll also produce a test harness that uses your lexer to list the tokens constituting a a
given program, using a format that is sufficiently rigid that we can specify a single “right”
sequence of lexemes for any program.

Each team will have space in a Subversion repository that the staff will maintain.
Handing in your project will amount to creating a Subversion “tag” for the files you want
to hand in. We’ll expect you to use the repository during development, frequently storing
versions so that we can see how you’re doing (and, of course, so you can get all the usual
advantages of version-control systems).

You may implement your solution in either C++ or Java. You may use the regular-
expression-parsing tools Flex (for C++) or JFlex (for Java), or you may write the whole
thing “by hand,” which we don’t recommend (although it’s a great way to waste an awful
lot of time). In either case, you’ll be using the result in the next project, so take care to
get it right!

Your job is to hand in a program (the lexer and its testing harness), including adequate
internal documentation (comments), and a thorough set of test cases, which we will run
both against your program and everybody else’s.

1 Your ultimate client

The parser you will write for Project #2 will expect to be able to extract certain information
from your lexer. Specifically, it will repeatedly call some method or function (which, as
you’ll see, is usually named yylex), and expect it to return something representing a
kind of token, and also to provide (by access to some variables or calls to some methods)

1

Project #1 2

a lexical value of some kind (a string, very likely) giving the text of the lexeme, a line
number indicating the line on which the token ends, and the name of the file containing
the token.

Unfortunately, the tools we’ll be using next, Bison and JBison, like to supply their
own definitions for syntactic categories. It would be nice to integrate definitions. So—and
also to save time and prevent the nature of this client from being a complete surprise to
you—we will supply two dummy parser files: one for Bison (C/C++) and one for JBison
(Java). When processed, these will provide definitions for the symbolic syntactic categories
we describe below.

2 Running your solution

The program we’ll be looking for when we test your submission is called LexTest. Our
script will look to see whether the compilation process produces a file LexTest.class

(indicating that we need to use the Java interpreter to run it) or LexTest (indicating that
we don’t). In either case, the argument list will be the same. For a C++ program, for
example, we will expect that the command

LexTest SEARCH-PATH FILE1.py FILE2.py ...

will compile a program consisting of the concatenation of files FILEi.py in order, using
SEARCH-PATH as the list of directories in which to search for imported files (see the “im-
port” command in the Pyth documentation). Following a Unix convention, the directories
in SEARCH-PATH are separated by colons (:), as in

LexTest .:includeDir:lib/myLibraryDir myprog.py

A statement in your Pyth program such as

import math

will look for a file math.py first in the current directory (.), then in includeDir, and then
lib/myLibraryDir, in that order, taking the first that it finds.

In case you’re curious, we will use the ability to have your lexer handle a concatenation
of files like this to prepend a standard prelude to all programs that run through the final
compiler. This will be a set of Pyth definitions that define the standard types and their
operations—a much more elegant and convenient method to introduce these definitions
than somehow “hardwiring” them into your compiler.

3 Output

Your LexTest program should produce, on the standard output, the sequence of all tokens
that your lexer finds, including their lexical values (“lexemes”) and their location in the

Project #1 3

source (what file are they from and what line). The rest of your compiler (when written)
will be able to use the location information to produce error messages.

Since LexTest is just a testing framework, it is very important that you keep it sepa-
rate from the lexer proper (a distinct class, for example). In particular, the lexer should
not print the output we describe below! That should be LexTest’s duty alone, using an
interface to the lexer that you design to extract the necessary information.

Suppose that the file foo.py contains the following text:

This is a small test program

import bar

while i > 0:

i -= 1

and that there is file called lib/bar.py containing

def prt ():

print "A string with \a funny characters\nin it"

If you start LexTest with

LexTest .:lib foo.py or java LexTest .:lib foo.py

then the output should be as follows:

File: lib/bar.py

1: DEF

1: ID "prt"

1: ’(’

1: ’)’

1: ’:’

1: NEWLINE

2: INDENT

2: PRINT

2: STRING_LITERAL "A string with \007 funny characters\012in it"

2: NEWLINE

3: DEDENT

File: foo.py

5: WHILE

5: ID "i"

5: ’>’

5: INTEGER_LITERAL "0"

5: ’:’

5: NEWLINE

Project #1 4

6: INDENT

6: ID "i"

6: MINUSEQ

6: INTEGER_LITERAL "1"

6: NEWLINE

7: DEDENT

END

As illustrated in this example, print each token preceded with its line number in the
source file (first line is line 1). Before the first token and before a token that comes from
a file different from the token before, print the file name in the format shown. For the
end-of-input token, print just END. Print the kind (syntactic category) of the token either
as a single-quoted character, for one-character punctuation, or as an all-upper-case word
from the following set for other tokens:

AMPSNDEQ &=

AND and

ARROW ->

BAREQ |=

BREAK break

CARATEQ ^=

CLASS class

CONTINUE continue

DEDENT

DEF def

ELIF elif

ELSE else

EQEQ ==

FLOAT LITERAL

FOR for

GLOBAL global

GTEQ >=

GTGT >>

GTGTEQ >>=

ID

IF if

IMPORT import

IN in

INDENT

INTEGER LITERAL

IS is

LTEQ <=

LTLT <<

LTLTEQ <<=

MINUSEQ -=

NE !=

NEWLINE

NOT not

OR or

PASS pass

PERCENTEQ %=

PLUSEQ +=

PRINT print

RETURN return

SLASHEQ /=

STAREQ *=

STARSTAR **

STARSTAREQ **=

STRING LITERAL

WHILE while

As in the example, the lexer should handle outer-level import statements (the lexer,
not the LexTest driver, because you’ll need this capability in later projects).

Finally, print the lexical values of tokens where it is significant: in identifiers (ID)
and literals. Translate strings into the illustrated canonical form: all characters greater
than or equal to blank in the character set are printed as is, and the backslash character
itself (ASCII code 92) and the control characters before blank (with codes less than 32),
are printed as three-digit octal escape sequences as in C, C++, and Java (with no other
escape sequences used). You’ll be using this format for communicating string constants to
later parts of the program, so it’s a good idea to write the method that does it in such
a way that later parts of the compiler can use it. Output integer literals in decimal (as
longs, so they are all non-negative), and use %.16e format for floating-point literals.

Since we’ll be doing literal comparisons to test your output, please adhere to this format
exactly. Each DEDENT and INDENT takes the line number of the more- or less-indented

Project #1 5

line (at the end of a file, this will be the imaginary line after the last line of the file).
Comments, blank lines, and whitespace are removed entirely from the output.

Your lexer should detect and report lexical errors (the lexer, not just the LexTest

driver, because you’ll need this in future projects):

• Singly quoted strings that aren’t complete by the end of the line;

• Triply quoted strings that aren’t complete by the end of the file that contains them;

• Integer constants that are too large;

• Characters that cannot be interpreted as tokens (e.g., ’ !’).

• import statements that refer to non-existent files.

• Any use of reserved words (such as assert) that are not used in Pyth, but are not
allowed as identifiers (see the list of keywords in the Pyth document).

• Inconsistent indentation.

In each case, print an error message in standard form on the standard error output, e.g.,

foo.py:5: integer constant too large.

Also arrange that if the lexer detects any errors, the program as a whole exits with a
non-zero exit code when processing is complete. Your program should always recover from
errors by simply printing the message, throwing away erroneous text (which can be quite
a bit in the case of unterminated strings) and trying to continue as helpfully as possible.

4 What to Turn In

The directory you turn in (see §5) should contain a file Makefile that is set up so that

gmake

(the default target) compiles your program and

gmake check

runs all your tests against your program. We’ll put sample Makefiles (for C++ and Java)
in ~cs164/hw/proj1 directory; feel free to modify at will as long as these two commands
continue to work.

Because we want to run your tests against everyone else’s program, we’d like you
to adhere to a standard format. In the directory you submit, have a subdirectory called
lexer-tests. Under that, have two subdirectories full of .py files: lexer-tests/correct
and lexer-tests/errors. For each file lexer-tests/correct/foo.py, have another file
lexer-tests/correct/foo.py.out, with the output that LexTest is supposed to produce.
The first set of tests will be: if we run LexTest with arguments

Project #1 6

lexer-tests/correct:lexer-tests lexer-tests/correct/foo.py

does it succeed (exit normally), print nothing on the standard error output, and produce
the same output as in the corresponding .out file? The second set of tests will be: if we
run LexTest with arguments

lexer-tests/errors:lexer-tests lexer-tests/errors/foo.py

will we get at least one error message on the standard output and will the program exit
with exit code 1 (the usual way to indicate a compilation error)?

Not only must your program work, but it must also be well documented internally.
At the very least, we want to see useful and informative comments on each method you
introduce and each class.

5 How to Submit

We’ve set up a Subversion repository for your team, initially containing a directory project

with the conventional subdirectories trunk, branches, and tags under it, as described in
the on-line Subversion book. The general idea is that you keep the latest (HEAD) version
of your project in the trunk directory, and make “cheap” copies of significant versions
of the trunk in the tags directory. The staff can see everything you check in. Anything
you put in the tags directory with a name of the form release-1.N we will treat as a
submission (the ‘1’ is the project number); and the one with the highest N we will treat
as your latest “official” submission.

Let’s assume that you have checked in a satisfactory working version of your project to
the trunk subdirectory, and want to submit it. The command

svn copy svn+ssh://cs164-tb@host/myteam/project/trunk \

svn+ssh://cs164-tb@host/myteam/project/tags/release-1.1

-m "First submitted version of project 1"

does the job. Here, myteam is your team’s name, and host is on of the instructional
servers (e.g., nova.cs.berkeley.edu). Alternatively, from within the working directory that
contains checked-out versions of the trunk and tags subdirectories, you can issue the two
commands:

svn copy trunk tags/release-1.1

svn commit -m "First submitted version of project 1"

and get the same effect.
Submit early and often (at least up to the deadline). Don’t worry about using up file

space with lots of submissions. Subversion does not actually copy your files; it just makes
notations that tell it that they’re the same files as in version such-and-such of the trunk.

You can even delete a submission, with a command like

Project #1 7

svn delete svn+ssh://cs164-tb@host/myteam/project/tags/release-1.1 \

-m "Remove bogus submission"

Inevitably, the moment you hit return on this command, you’ll realize that you meant to
delete release-2 instead. No worries: if release-1 existed in revision 125, say, then you
can recreate it with

svn copy --revision 125 \

svn+ssh://cs164-tb@host/myteam/project/tags/release-1.1 \

tags/release-1

svn commit -m "Recreated release 1"

6 Assorted Advice

First, get started as soon as possible. Second, don’t ever waste time beating your head
against a wall. If you come to an impasse, recognize it quickly and come see one of us or, if
we are not immediately available, work on something else for a while (you can never have
enough test cases, for example). Third, keep track of your partner. If possible, schedule
time to do most of your work together. I’ve seen all too many instances of the Case of the
Flaky Partner.

Learn your tools. You should be doing all of your compilations using gmake, Eclipse,
or some other IDE. Get to know this tool and try to understand the “makefiles” we give
you, even if you don’t use them. These tools really do make life much easier for you. Learn
to use the gdb and gjdb debuggers (also usable from within Emacs), or the equivalent in
Eclipse or your favorite IDE. In most cases, if your C++ program blows up, you should
be able to at least tell me where, it blew up (even if the error that caused it is elsewhere).
I do not look kindly on those who do not at least make that effort before consulting me.
Use your Subversion repository to coordinate with your partner and to save development
versions frequently.

	Your ultimate client
	Running your solution
	Output
	What to Turn In
	How to Submit
	Assorted Advice

