Using a Frame Pointer

In our examples so far, we have always compiled with —fomit-frame-pointer. That made
the resulting code simpler, but in practice we usually do use a frame pointer. In the general
case it is required, and it makes life a lot more convenient to use a frame pointer for all
functions. So before that makes sense, we have to find out what exactly we mean by a
frame pointer.

To motivate this, and follow up on the comment that a frame pointer is required, we first
look at a case where we really cannot manage without one.

The C Function alloca

The C standard (and indeed all C compilers for a long time) have implemented a dynamic
storage function called alloca. This is similar to malloc with one very important difference.
The storage from malloc stays around until you do a corresponding free operation.
However, in the case of alloca, the storage is automatically released when you return from
the current function, that is, the function in which the alloca call occurred.

There are several possible ways of implementing alloca. One approach would be to use
malloc, and then make sure that the function did an implicit free call before it returned. But
with a little thought we can see a much simpler implementation, which is in fact the one
that is intended by the designers of this facility. What other storage do we know about that
is freed automatically on return from a function? The answer of course is the local variables
of the function, and we achieve this by allocating them in the local stack frame. A simple
add to the stack pointer releases the entire frame. If we have alloca allocate its storage in
the local stack frame, then it will be automatically freed on the return. Let’s look at a little
example in C:

unsigned sum (unsigned s) {
char *ptr;
unsigned j;
ptr = (char *)alloca(16);
for (j=0; j<16; j++) ptr[j] = J;
for (j=0; j<16; j++) s += ptr[jl;
return s;

}

The code generated for the alloca call might look like:

sub esp, 16
mov eax, esp

The purpose of this code is simply to allocate 16 bytes on the local stack frame by
increasing its size by 16 bytes. After the sub instruction has increased the size, the new
value of esp points to the allocated area, and is copied to EAX for further use.

We fudged a bit above, and said “might look like”. In fact the actual code generated by gcc
is:



sub esp, 32

mov eax, esp
add eax, 15
shr eax, 4
sal eax, 4

What is happening here is that the specification of alloca requires that the allocated storage
be maximally aligned, which on our machine means 16-byte aligned. The way this is
achieved is to allocate 16 bytes more than is needed, and then the last three instructions
adjust the address to insure that it is 16-byte aligned.

So far so good. We have in EAX the address of a properly aligned block of appropriate
length (16 bytes in this case) storage allocated on the local stack. When the function
returns, the local stack frame will be removed, by restoring the old value of ESP, and the
alloca storage (along with all local variables) will be freed.

There is one huge problem. The code sequence above modified the value in ESP. But we
rely on the value in ESP for addressing both our local variables and the arguments to the
function. If we go changing ESP by arbitrary amounts, we are in big trouble, because we
don’t know where our local variables and parameters are any more relative to ESP. Note
that in the case above, the argument to alloca is a static constant, but in the general case it
can be a computed variable. After such an alloca call the stack looks like:

Arguments to the current function
Return point for call

Local variables for function
Alloca variable of unknown size
Alignment f£ill of unknown size

where ESP points to the bottom of this frame. But since the areas at the bottom of the
frame are of unknown (at compile time) size, we have no idea how to address the local
variables or the arguments, and we don’t know how much to add to ESP to release the
frame and get back to the return point at the end of the function.

This is a mess, which is cleaned up completely by the introduction of a frame pointer. The
idea of a frame pointer is that we capture the value of ESP in a separate register on entry to
the function. This saved value, which is called the frame pointer, is never changed
throughout execution of the function, even if ESP is changed. On the ia32 architecture, it is
conventional to use EBP to hold the frame pointer (in fact that’s where its name comes
from BP = Base Pointer, since this value points to the base of the stack frame).

Although the frame pointer is only absolutely required if a function has alloca calls, it is
convenient to use a frame pointer for any function. To see the frame pointer in action, let’s

recompile a simple function we looked at in a previous chapter:

struct node { unsigned val; struct node *next; };



unsigned find (struct node *h, unsigned val) {
struct node *p;
p = h;
while (p) {
if (p->val == val) return 1;
else p = p->next;
}

return O;

With the frame pointer omitted, gcc generated:

_find:
sub esp, 8
mov eax, DWORD PTR [esp+12]
mov DWORD PTR [esp+4], eax
L2:
cmp DWORD PTR [esp+4], O
je L3
mov eax, DWORD PTR [esp+4]
mov eax, DWORD PTR [eax]
cmp eax, DWORD PTR [esp+16]
jne L4
mov DWORD PTR [esp], 1
jmp L1l
L4:
mov eax, DWORD PTR [esp+4]
mov eax, DWORD PTR [eax+4]
mov DWORD PTR [esp+4], eax
jmp L2
L3:
mov DWORD PTR [esp], O
Ll:
mov eax, DWORD PTR [esp]
add esp, 8
ret

Now we will recompile without the —fomit-frame-pointer switch, which will cause a
frame pointer to be used. The default is to use a frame pointer always. It only gets omitted
if we specifically use this switch to suppress it. Even that switch is only a request. If we use
alloca, the compiler ignores the request, since otherwise it would be stuck! Here is the code
with a frame pointer:

_find:
push ebp
mov ebp, esp
sub esp, 8

mov eax, DWORD PTR [ebp+8]



mov DWORD PTR [ebp-4], eax

L2:
cmp DWORD PTR [ebp-4], O
je L3
mov eax, DWORD PTR [ebp-4]
mov eax, DWORD PTR [eax]
cmp eax, DWORD PTR [ebp+12]
jne L4
mov DWORD PTR [ebp-8], 1
jmp L1

L4:
mov eax, DWORD PTR [ebp-4]
mov eax, DWORD PTR [eax+4]
mov DWORD PTR [ebp-4], eax
jmp L2

L3:
mov DWORD PTR [ebp-8], O

Ll1:
mov eax, DWORD PTR [ebp-8]
leave
ret

The critical instructions here are the initial entry instructions (which are part of the prolog
of the function, that is the instructions generated at the start of the function to get things set

up):

push ebp
mov ebp, esp

The first instruction is saving EBP on the stack. We need to do this, since we are about to
clobber EBP. Our caller is also presumably using a frame pointer stored in EBP. We can’t
just go destroying that value, or we will be in bad shape when we return, since our caller
will depend on EBP containing the right value. So part of the requirement in the ABI is
that every function must return with the value in EBP unchanged. That’s achieved in one
of two ways. Either the function never touches EBP (that’s how all the functions we
compiled so far worked), or if EBP is changed it must be saved on entry, and restored on
exit.

The second instruction copies the value in ESP into EBP. From now on all references to
arguments and local variables will use this EBP value that does not change, rather than
ESP. We can understand the code more clearly if we have the stack layout clearly in mind
as we read it. As usual we will assume a starting value of 00100000 for the stack pointer.

Addr 00100000 copy of value of argument wval €< [EBP+12]
Addr O00OFFFFC copy of value of argument h < [EBP+8



Addr OOOFFFF8 return point past call of find € [EBP+4]
Addr OOOFFFF8 saved value of caller EBP < [EBP]

Addr OOOFFFF4 value of local variable p < [EBP-4]
Addr O00OFFFF4 1local variable to hold result < [EBP-8]

Once we understand this stack frame layout, we can see that the code of the function is
essentially unchanged. The value in ESP actually ends up pointing to the result variable,
but we don’t use ESP in our addressing calculations any more. This simplifies the code
quite a bit. In particular, we don’t need to worry about PUSH instructions changing the
addressing, not to mention alloca calls with variable arguments!

In the above stack frame layout, you will notice that arguments are addressed using positive
offsets off the frame pointer EBP, and local variables are addressed using negative offsets
off the frame pointer. That’s typical, and is fine, since the addressing mode we use (regiser
indirect with offset) allows both positive and negative offsets.

One nice thing about this layout is that you can always immediately find the return point
from any function by using the frame pointer value. The return point is just above the
address referenced by the frame pointer, and this will always be the case, regardless of the
number of arguments or local variables. Furthermore, the frame pointer points to the old
saved frame pointer, so you can work your way back on the stack easily. This is very
convenient for tools like the debugger for tracing their way through a call history. By call
history, we mean the sequence of calls that got us to a particular point in the program
execution.

One final thing to look at is the returmn sequence. How do we get rid of the frame and get
back to the return point. We used to do this by adding a known constant to ESP, but the
whole idea of using a frame pointer is to avoid the need of keeping track of the value in
ESP. In fact the solution is simple, since EBP points to the top of the frame, we can simply
execute

mov esp, ebp

That removes the local frame, by copyiing the frame pointer value back into the stack
pointer. This undoes all modifications to the stack pointer that occurred after the original
setting of the frame pointer, including allocation of the local stack frame variables, as well
as any changes due to alloca calls. After that instruction has executed, EBP now points
back to the saved EBP value., and we simply do:

pop ebp

to restore the old frame pointer. We haven’t actually seen the pop instruction before, but it
1s easy to guess that it is the exact opposite of the push instruction. It removes a value from
the stack placing it in the destination (in this case EBP) and adjusts the stack pointer by
adding four after retrieving the value.



The push and pop instructions are useful in conjunction with one another if you run out of
registers. For example, you can save a few registers using push instructions:

push eax
push ebx
push ecx

Now you can execute some code using these registers, and when you are done with them,
the original values can be retrieved using pop instructions, which must be in the reverse
order since this is a stack:

PoP ecx
pPop ebx
PoP eax

Although it would work fine to use the sequence:

mov esp, ebp
pop ebp
ret

to return from a function when using a frame pointer, in fact, as you can see from the full
code from the function above, the actual sequence used is:

leave
ret

The leave instruction is precisely equivalent to the mov/pop sequence, but is shorter and
more efficient. It is provided since we know that this particular mov/pop sequence will be
very common, since it will occur every time we return from a function.

We will end this chapter by looking at the full code for the function we introduced at the
start of the chapter that calls alloca:

_sum:

push ebp

mov ebp, esp

sub esp, 8

sub esp, 32

mov eax, esp

add eax, 15

shr eax, 4

sal eax, 4

mov DWORD PTR [ebp-4], eax

mov DWORD PTR [ebp-8], O
L2:

cmp DWORD PTR [ebp-8], 15

ja L3



mov eax, DWORD PTR [ebp-4]

mov edx, DWORD PTR [ebp-8]
add edx, eax
mov eax, DWORD PTR [ebp-8]
mov BYTE PTR [edx], al
lea eax, [ebp-8]
inc DWORD PTR [eax]
jmp L2
L3:
mov DWORD PTR [ebp-8], O
L5:
cmp DWORD PTR [ebp-8], 15
ja L6
mov eax, DWORD PTR [ebp-4]
add eax, DWORD PTR [ebp-8]
movsx eax, BYTE PTR [eax]
add DWORD PTR [ebp+8], eax
lea eax, [ebp-8]
inc DWORD PTR [eax]
jmp L5
L6:
mov eax, DWORD PTR [ebp+8]
leave
ret

As we can see, the introduction of the frame pointer has solved the problem of alloca
moving ESP, since we use the frame pointer for addressing everywhere, and the generated
code just does not care about the exact value in ESP at any point.



