Lexical Analysis

Lecture 2-4

Notes by G. Necula, with additions by P. Hilfinger

Administrivia

• Moving to 60 Evans on Wednesday
• HW1 available
• Pyth manual available on line.
• Please log into your account and electronically register today.
• Register your team with “make-team”. See class announcement page. Project #1 available Friday.
• Use “submit hw1” to submit your homework this week.
• Section 101 (9AM) is gone.

Outline

• Informal sketch of lexical analysis
 – Identifies tokens in input string

• Issues in lexical analysis
 – Lookahead
 – Ambiguities

• Specifying lexers
 – Regular expressions
 – Examples of regular expressions

The Structure of a Compiler

Source

Lexical analysis

Tokens

Today we start

Parsing

Optimization

Interm. Language

Code Gen.

Machine Code

Lexical Analysis

• What do we want to do? Example:
 \(\text{if } (i == j) \)
 \(z = 0; \)
 \(\text{else} \)
 \(z = 1; \)

• The input is just a sequence of characters:
 \(\text{\textbackslash if (i == j)\textbackslash n\textbackslash n} \text{z = 0; \textbackslash n\textbackslash nelse\textbackslash n\textbackslash n} \text{z = 1;} \)

• Goal: Partition input string into substrings
 – And classify them according to their role

What’s a Token?

• Output of lexical analysis is a stream of tokens
• A token is a syntactic category
 – In English:
 noun, verb, adjective,
 – In a programming language:
 Identifier, Integer, Keyword, Whitespace,
• Parser relies on the token distinctions:
 – E.g., identifiers are treated differently than keywords
Tokens

- Tokens correspond to *sets of strings*:
 - Identifiers: strings of letters or digits, starting with a letter
 - Integers: non-empty strings of digits
 - Keywords: "else" or "if" or "begin" or ...
 - Whitespace: non-empty sequences of blanks, newlines, and tabs
 - OpenPars: *left*-parentheses

Lexical Analyzer: Implementation

- An implementation must do two things:
 1. Recognize substrings corresponding to tokens
 2. Return:
 1. The type or syntactic category of the token,
 2. The value or *lexeme* of the token (the substring itself).

Example

- Our example again:
  ```
  if (i == j)
  z = 0;
  else
  z = 1;
  ```
- Token-lexeme pairs returned by the lexer:
 - (Whitespace, "\t")
 - (Keyword, "if")
 - (OpenPar, "(")
 - (Identifier, "i")
 - (Relation, "==")
 - (Identifier, "j")
 - ...

Lexical Analyzer: Implementation

- The lexer usually discards "uninteresting" tokens that don't contribute to parsing.
- Examples: Whitespace, Comments
- Question: What happens if we remove all whitespace and all comments prior to lexing?

Lookahead.

- Two important points:
 1. The goal is to partition the string. This is implemented by reading left-to-right, recognizing one token at a time
 2. "Lookahead" may be required to decide where one token ends and the next token begins
- Even our simple example has lookahead issues
 - *i* vs. *if*
 - *==* vs. *==*

Next

- We need
 - A way to describe the lexemes of each token
 - A way to resolve ambiguities
 - Is it two variables: *i* and *j*?
 - Is "*==" two equal signs? ==?
Regular Languages

- There are several formalisms for specifying tokens

- Regular languages are the most popular
 - Simple and useful theory
 - Easy to understand
 - Efficient implementations

Languages

Def. Let \(\Sigma \) be a set of characters. A language over \(\Sigma \) is a set of strings of characters drawn from \(\Sigma \)

(\(\Sigma \) is called the alphabet)

Examples of Languages

- Alphabet = English characters
 - Language = English sentences

- Not every string on English characters is an English sentence
 - Note: ASCII character set is different from English character set

Notation

- Languages are sets of strings.

- Need some notation for specifying which sets we want

 - For lexical analysis we care about regular languages, which can be described using regular expressions.

Regular Expressions and Regular Languages

- Each regular expression is a notation for a regular language (a set of words)

- If \(A \) is a regular expression then we write \(L(A) \) to refer to the language denoted by \(A \)

Atomic Regular Expressions

- Single character: \('c' \)

 \(L('c') = \{ "c" \} \) (for any \(c \in \Sigma \))

- Concatenation: \(AB \) (where \(A \) and \(B \) are reg. exp.)

 \(L(AB) = \{ ab \mid a \in L(A) \text{ and } b \in L(B) \} \)

- Example: \(L("i"."f") = \{ "if" \} \)
 (we will abbreviate \("i"."f" \) as \(if \))
Compound Regular Expressions

- **Union**
 \[L(A \mid B) = L(A) \cup L(B) = \{ s \mid s \in L(A) \text{ or } s \in L(B) \} \]

- **Examples:**
 \['if' \mid 'then' \mid 'else' = \{ "if", "then", "else" \} \]
 \['0' \mid '1' \mid '2' \mid '3' \mid '4' \mid '5' \mid '6' \mid '7' \mid '8' \mid '9' \]
 (note the \(\ldots \) are just an abbreviation)

- **Another example:**
 \[L(('0' \mid '1') ('0' \mid '1')) = \{ "00", "01", "10", "11" \} \]

More Compound Regular Expressions

- **So far we do not have a notation for infinite languages**

- **Iteration:**
 \[A^* = \{ \varepsilon \} \cup L(A) \cup L(AA) \cup L(AAA) \cup \ldots \]

- **Examples:**
 \['0'^* = \{ \varepsilon, "0", "00", "000", \ldots \} \]
 \['1'0'^* = \{ \text{strings starting with '1' and followed by '0's} \} \]

- **Epsilon:**
 \[\varepsilon = \{ \varepsilon \} \]

Example: Keyword

- Keyword: "else" or "if" or "begin" or ...

 \['else' \mid 'if' \mid 'begin' \mid \ldots \]

 ("else" abbreviates \(\varepsilon \) 'l' 's' 'e'

Example: Integers

- Integer: a non-empty string of digits

 \[\text{digit} = '0' \mid '1' \mid '2' \mid '3' \mid '4' \mid '5' \mid '6' \mid '7' \mid '8' \mid '9' \]

 \[\text{number} = \text{digit} \text{digit}^* \]

 Abbreviation: \(A^+ = A \cdot A^* \)

Example: Identifier

- Identifier: strings of letters or digits, starting with a letter

 \[\text{letter} = 'A' \mid 'Z' \mid 'a' \mid 'z' \mid \ldots \]

 \[\text{identifier} = \text{letter} (\text{letter} | \text{digit})^* \]

 Is \(\text{letter}^* | \text{digit}^* \) the same as \((\text{letter} | \text{digit})^* \)?

Example: Whitespace

- Whitespace: a non-empty sequence of blanks, newlines, and tabs

 \[(' ' \mid \backslash t \mid \backslash n')^* \]

 (Can you spot a subtle omission?)
Example: Phone Numbers

- Regular expressions are all around you!
- Consider (510) 643-1481

\[\Sigma = \{ 0, 1, 2, 3, ..., 9, (,), - \} \]

area = digit^3
exchange = digit^3
phone = digit^4
number = '(' area ')' exchange '-' phone

Example: Email Addresses

- Consider necula@cs.berkeley.edu

\[\Sigma = \{ \text{letters}, \{ ., @ \} \} \]
name = letter^*address = name '@' name ('.' name)^*

Summary

- Regular expressions describe many useful languages
- Next: Given a string \(s \) and a R.E. \(R \), is \(s \in L(R) \)?
- But a yes/no answer is not enough!
- Instead: partition the input into lexemes
- We will adapt regular expressions to this goal

Next: Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions
 \(\text{ RegExp } \Rightarrow \text{ NFA } \Rightarrow \text{ DFA } \Rightarrow \text{ Tables } \)

Regular Expressions \(\Rightarrow\) Lexical Spec. (1)

1. Select a set of tokens
 - Number, Keyword, Identifier, ...

2. Write a R.E. for the lexemes of each token
 - Number = digit^*
 - Keyword = 'if' | 'else' | ...
 - Identifier = letter (letter | digit)^*
 - OpenPar = '('
 - ...

Regular Expressions \(\Rightarrow\) Lexical Spec. (2)

3. Construct \(R \), matching all lexemes for all tokens

\[R = \text{Keyword} | \text{Identifier} | \text{Number} | ... \]
\[= R_1 | R_2 | R_3 | ... \]

Facts: If \(s \in L(R) \) then \(s \) is a lexeme
- Furthermore \(s \in L(R_i) \) for some \(i \)
- This \(i \) determines the token that is reported
4. Let the input be $x_1 \ldots x_n$
 ($x_1 \ldots x_n$ are characters in the language alphabet)
 - For $1 \leq i \leq n$ check $x_1 \ldots x_i \in L(R)$?

5. It must be that $x_1 \ldots x_i \in L(R_j)$ for some i and j

6. Remove $x_1 \ldots x_i$ from input and go to (4)

Ambiguities (1)

- There are ambiguities in the algorithm
- Example:
 - $R = \text{Whitespace} \mid \text{Integer} \mid \text{Identifier} \mid '+'$
 - Parse "foo+3"
 - "f" matches R, more precisely Identifier
 - "foo" matches R, more precisely '+'
 - ...
 - The token-lexeme pairs are (Identifier, "f"); (Identifier, "+"); (Identifier, "3")

- In general, if $x_1 \ldots x_i \in L(R_j)$ and $x_1 \ldots x_i \in L(R_k)$
 - Rule: use rule listed first (j if $j < k$)

- We must list 'new' before Identifier

Error Handling

- $R = \text{Whitespace} \mid \text{Integer} \mid \text{Identifier} \mid '+'$
 - Parse "=56"
 - No prefix matches R: not "=", nor "+5", nor "+=56"
 - Problem: Can't just get stuck ...
 - Solution:
 - Add a rule matching all "bad" strings; and put it last
 - Lexer tools allow the writing of:
 R = R_1 \mid \ldots \mid R_n \mid \text{Error}
 - Token Error matches if nothing else matches

Summary

- Regular expressions provide a concise notation for string patterns
- Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)
Finite Automata

- Regular expressions = specification
- Finite automata = implementation

- A finite automaton consists of
 - An input alphabet Σ
 - A set of states S
 - A start state s_0
 - A set of accepting states $F \subseteq S$
 - A set of transitions $state \rightarrow input \rightarrow state$

Finite Automata

- Transition $s_1 \rightarrow a \rightarrow s_2$
- Is read
 - In state s_1 on input "a" go to state s_2
- If end of input
 - If in accepting state => accept, otherwise => reject
 - If no transition possible => reject

Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition a

A Simple Example

- A finite automaton that accepts only "1"

- A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state

Another Simple Example

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: {0,1}

- Check that "1110" is accepted but "110..." is not

And Another Example

- Alphabet {0,1}
- What language does this recognize?
And Another Example

- Alphabet still \{0, 1\}
- The operation of the automaton is not completely defined by the input
 - On input "11" the automaton could be in either state

Epsilon Moves

- Another kind of transition: \(\varepsilon\)-moves
- Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No \(\varepsilon\)-moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have \(\varepsilon\)-moves
- Finite automata have finite memory
 - Need only to encode the current state

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make \(\varepsilon\)-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

- An NFA can get into multiple states
- Input: 1 0 1
- Rule: NFA accepts if it can get in a final state

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)
- DFAs are easier to implement
 - There are no choices to consider
NFA vs. DFA (2)

- For a given language the NFA can be simpler than the DFA
- DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata

- High-level sketch

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp A
- For ε
- For input a

Regular Expressions to NFA (2)

- For AB
- For A | B

Regular Expressions to NFA (3)

- For A*

Example of RegExp -> NFA conversion

- Consider the regular expression
 (1 | 0)*1
- The NFA is
NFA to DFA. The Trick

- Simulate the NFA
- Each state of resulting DFA
 = a non-empty subset of states of the NFA
- Start state
 = the set of NFA states reachable through ε-moves
 from NFA start state
- Add a transition \(S \xrightarrow{a} S' \) to DFA iff
 - \(S' \) is the set of NFA states reachable from the
 states in \(S \) after seeing the input \(a \)
 - considering ε-moves as well

NFA to DFA. Remark

- An NFA may be in many states at any time
- How many different states?
- If there are \(N \) states, the NFA must be in
 some subset of those \(N \) states
- How many non-empty subsets are there?
 - \(2^N - 1 \) = finitely many, but exponentially many

Implementation

- A DFA can be implemented by a 2D table \(T \)
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition \(S_i \xrightarrow{a} S_k \) define \(T[i,a] = k \)
- DFA “execution”
 - If in state \(S_i \) and input \(a \), read \(T[i,a] = k \) and skip to
 state \(S_k \)
 - Very efficient

Table Implementation of a DFA

\[
\begin{array}{ccc}
<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>
\end{array}
\]
Implementation (Cont.)

• NFA -> DFA conversion is at the heart of tools such as flex or jflex
• But, DFAs can be huge
• In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations

Perl’s “Regular Expressions”

• Some kind of pattern-matching feature now common in programming languages.
• Perl's is widely copied (cf. Java, Python).
• Not regular expressions, despite name.
 - E.g., \(\text{pattern } /A(\S+)\text{ is a }S/ \) matches "A spade is a spade" and "A deal is a deal", but not "A spade is a shovel"
 - But no regular expression recognizes this language!
 - Capturing substrings with \((...) \) itself is an extension

Implementing Perl Patterns (Sketch)

• Can use NFAs, with some modification
• Implement an NFA as one would a DFA + use backtracking search to deal with states with nondeterministic choices.
• Add extra states (with \(\varepsilon \) transitions) for parentheses.
 - \(\text{'('} \) state records place in input as side effect.
 - \(')\) state saves string started at matching \(\text{'(} \)
 - $n matches input with stored value.
• Backtracking much slower than DFA implementation.