Lecture 26: Pointer Analysis

[Based on slides from R. Bodik]

Administrivia

• HKN survey next Thursday. Worth 5 points (but you must show up!).

Today

• Points-to analysis: an instance of static analysis for understanding pointers
• Andersen’s algorithm via deduction
• Implementation of Andersen’s algorithm in Prolog

General Goals of Static Analysis

• Determine run-time properties statically at compilation.
• Sample property: “is variable x a constant?”
• Since we don’t know the inputs, must consider all possible program executions.
• Conservative (err on the side of caution) for soundness:
 – allowed to say x is not a constant when it is,
 – but not that x is a constant when it is not.
• Many clients: optimization, verification, compilation.

Client 1: Optimizing virtual calls in Java

• Motivation: virtual calls are costly, due to method dispatch
• Idea:
 – determine the target of the call statically
 – if we can prove call has a single target method, call the target directly
• declared (static) types of pointer variables not precise enough for this, so, analyze their run-time (dynamic) types.

Client 1: Example

```java
class A {
    void foo() {...}
}
class B extends A {
    void foo() {...}
}
void bar(A a) {
    a.foo() // OK to just call B.foo?
}
B myB = new B();
A myA = myB;
bar(myA);
```

• Declared type of a.foo() to target both A.foo and B.foo.
• Yet we know only B.foo is the target.
• What program property would reveal this fact?
Client 2: Verification of casts

- In Java, casts are checked at run time: \((\text{Foo}) \ e \) translates to
 \[
 \text{if (! (e instanceof Foo))}
 \text{ throw new ClassCastException();}
 \]
- Java generics help readability, but still cast.
- The exception prevents any security holes, but is expensive.
- Static verification useful to catch bugs.
- Goal: prove that no exception will happen at runtime

Client 2: Example

class SimpleContainer {
 Object a;
 void put (Object o) { a=o; }
 Object get() { return a; }
}

SimpleContainer c1 = new SimpleContainer();
SimpleContainer c2 = new SimpleContainer();
c1.put(new Foo()); c2.put('Hello');

Foo myFoo = (Foo) c1.get(); // Check not needed

What property will lead to desired verification?

Client 3: Non-overlapping fields in heap

\[
\text{E = new Thing (42); for (j = 0; j < D.len; j += 1) { if (E.len >= E.max)) throw new OverflowException (); E.data[E.len] = D.data[i]; E.len += 1;}}
\]

We assign to \(E\.len\), but we don’t have to fetch from \(D\.len\) every time; can save in register.

Pointer Analysis

- To serve these three clients, want to understand how pointers “flow,” that is, how they are copied from variable to variable.
- Interested in flow from \textbf{producers} of objects (\textit{new Foo}) to \textbf{users (myFoo.f)}.
- Complication: pointers may flow via the heap: a pointer may be stored in an object’s field and later be read from this field.
- For simplicity, assume we are analyzing Java without reflection, so that we know all fields of an object at compile time.
Analyses

• Client 1: virtual call optimization:
 – which producer expressions new T() produced the values that may flow to receiver p (a consumer) in a call?
 – Knowing producers tells us possible dynamic types of p, and thus also the set of target methods.

• Client 2: cast verification:
 – Same, but producers include expressions (Type) p.

• Client 3: non-overlapping fields: again, same question

Flow analysis as a constant propagation

• Initially, consider only new and assignments p=r:
 \[
 \text{if (\ldots)p = new T1(); else p = new T2();}
 \]
 \[
 r = p; r.f(); // what are possible dynamic types of r?
 \]

• We (conceptually) translate the program to
 \[
 \text{if (\ldots)p = o_1; else p = o_2;}
 \]
 \[
 r = p; r.f(); // what are possible symbolic constant values r?
 \]

Abstract objects

• The \(o_i\) constants are called abstract objects
• An abstract object \(o_i\) stands for any and all concrete objects allocated at the allocation site (‘new’ expression) with number \(i\).
• When the analysis says a variable \(p\) may have value \(o_7\),
• we know \(p\) may point to any object allocated at
 \[
 \text{new_7 Foo()}
 \]

Flow analysis: Add pointer dereferences

\[
\begin{align*}
 x & = \text{new Obj();} \quad // o_1 \\
 z & = \text{new Obj();} \quad // o_2 \\
 w & = x; \\
 y & = x; \\
 y.f & = z; \\
 v & = w.f;
\end{align*}
\]
• To propagate the abstract objects through \(p.f\), must keep track of the heap state—where the pointers point:
 – \(y\) and \(w\) point to same object
 – \(z\) and \(y.f\) point to same object, etc.
Flow-Insensitive Analysis

- The heap state may change at each statement, so ideally, track the heap state separately at each program point as in dataflow analysis.
- But to be scalable (i.e. practical), analyses typically don't do it.
- For example, to save space, can collapse all program points into one consequently, they keep a single heap state, and disregard the control flow of the program (flow-insensitive analysis):
 - assume that statements can execute in any order, and any number of times
- So, flow-insensitive analysis transforms this program
  ```
  if (...) p = new T1(); else p = new T2();
  r = p; p = r.f;
  ```
 into this CFG:

 ![CFG Diagram]

Flow-Insensitive Analysis, contd.

- Motivation: Just "version" of program state, hence less space
- Flow-insensitive analysis is sound, assuming we mean that at least all possible values of pointer from all possible executions found
- But it is generally imprecise:
 - In effect, adds many executions not present in the original program;
 - Does not distinguish value of p at various program points.

Canonical Statements

- Java pointers can be manipulated in complex statements, such as
  ```
  p.f().g.arr[i] = r.f.g(new Foo()).h
  ```
- To keep complexity under control, prefer a small set of canonical statements that accounts for everything our analysis needs to serve as intermediate representation:
  ```
  p = new T()  new
  p = r  assign
  p = r.f  getfield
  p.f = r  putfield
  ```
- Complex statements can be canonicalized
  ```
  p.f.g = r.f  t1 = p.f; t2 = r.f; t1.g = t2
  ```
- Can be done with a syntax-directed translation

Handling of method calls: Arguments and return values

- Translate calls into assignments. For example,
  ```
  Object foo(T x) { return x.f }
  r = new T; s = foo(r.g)
  ```
 could translate to
  ```
  foo_retval = x.f;
  r = new T; x = r.g; s = foo_retval;
  ```
 (have used flow-insensitivity: order irrelevant)
Handling of method calls: targets of virtual calls

- Call p.f() may call many possible methods
- To do the translation shown on previous slide, must determine what these targets are
- Suggest two simple methods:
 - Use declared type of p.
 - Check whole program to see which types are actually instantiated.

Handling of method calls: arrays

- We collapse all array elements into one.
- Represent this single element by a field named arr, so p.g[i] = r becomes p.g.arr = r

Andersen’s Algorithm for flow-insensitive points-to analysis

- Goal: computes a binary relation between variables and abstract objects:
 \(o \) flowsTo \(x \) when abstract object \(o \) may be assigned to \(x \).
- (Or, if you prefer, \(x \) pointsTo \(o \).)
- Strategy: Deduce the flowsTo relation from program statements:
 - Statements are facts.
 - Analysis is a set of inference rules.
 - flowsTo relation is a set of facts inferred with analysis rules.

Statement facts

We’ll write facts in the form \(x \) predicate \(y \)

- \(p = \text{new} \ 0 \) \(\rightarrow o_i \) \(\text{new} \ 0 \)
- \(p = r \) \(\rightarrow r \) \(\text{assign} \ 0 \)
- \(p = r.f \) \(\rightarrow r \) \(\text{gf} (f) \) \(p \) \(\text{(get field)} \)
- \(p.f = r \) \(\rightarrow r \) \(\text{pf} (f) \) \(p \) \(\text{(put field)} \)

and apply these inference rules:

- Rule 1) \(o_i \) \(\text{new} \ 0 \) \(\rightarrow o_i \) \(\text{flowsTo} \ 0 \)
- Rule 2) \(o_i \) \(\text{flowsTo} \ 0 \ \& \ \& \ r \) \(\text{assign} \ 0 \) \(\rightarrow o_i \) \(\text{flowsTo} \ 0 \)
- Rule 3) \(o_i \) \(\text{flowsTo} \ 0 \ \& \ a \) \(\text{pf} (f) \) \(p \ \& \ p \) alias \(r \ \& \ r \) \(\text{gf} (f) \) \(b \) \(\rightarrow o_i \) \(\text{flowsTo} \ 0 \)
- Rule 4) \(o_i \) \(\text{flowsTo} \ 0 \ \& \ a \) \(\text{flowsTo} \ 0 \) \(\rightarrow x \) alias \(y \)
Meaning of the results

- When the analysis infers $o \text{ flowsTo } y$, what did we prove?
- Nothing useful, usually, since $o \text{ flowsTo } y$ does not imply that there is a program input for which o will definitely flow to y.
- BUT the useful results are places where analysis does not infer that $o \text{ flowsTo } y$:
- In those cases—because the analysis assumes conservatively that o flows to y if there appears to be any possibility of that happening—we can infer that not $o \text{ flowsTo } y$ for all inputs.
- Same arguments apply to alias, pointsTo relations and many other static analyses in general.

Inference Example

The program:

```plaintext
x = new Foo(); // o₁
z = new Bar(); // o₂
w = x;
y = x;
y.f = z;
v = w.f;
```

The six facts:

```plaintext
o₁ new x
o₂ new z
x assign w
x assign y
z pf(f) y
w gf(f) v
```

Sample inferences:

```plaintext
o₁ new x ⇒ o₁ flowsTo x
o₂ new z ⇒ o₂ flowsTo z
o₁ flowsTo x ∧ x assign w ⇒ o₁ flowsTo w
o₁ flowsTo x ∧ x assign y ⇒ o₁ flowsTo y
o₁ flowsTo y ∧ o₁ flowsTo w ⇒ y alias w
o₂ flowsTo z ∧ z pf(f) y ∧ y alias w ∧ w gf(f) v ⇒ o₂ flowsTo v
```

Inference Example, contd.

- The inference must continue until no more facts can be derived; only then do we know we have performed sound analysis.
- In this example:
 - We have inferred $o₂ flowsTo v$
 - But we have not inferred $o₁ flowsTo v$.
 - Hence we know v will point only to instances of Bar (assuming the example contains the whole program)
 - Thus, casts (Bar) v will succeed
 - Similarly, calls $v.f()$ are optimizable.

Prolog program for Andersen algorithm

```prolog
new(o₁,x). % x=new_1 Foo()
new(o₂,z). % z=new_2 Bar()
assign(x,y). % y=x
assign(x,w). % w=x
pf(z,y,f). % y.f=z
gf(w,v,f). % v=w.f
flowsTo(0,X) :- new(0,X).
flowsTo(0,X) :- assign(Y,X), flowsTo(0,Y).
flowsTo(0,X) :- pf(Y,P,F), gf(R,X,F), aliasP,R, flowsTo(0,Y).
alias(X,Y) :- flowsTo(0,X), flowsTo(0,Y).
```

- Prolog's search is too general and potentially expensive.
- Prolog program may in general backtrack (exponential time)
- Fortunately, there are better algorithms as well that operate in polynomial time.