Lecture 3: Finite Automata

Administrivia
- Everyone should now be registered electronically using the link on our webpage. If you haven't, do so today!
- I'd like to have teams formed by next Monday at the latest.
- Please fill out the background survey linked to on the homework page.

An Alternative Style for Describing Languages

- Rather than giving a single pattern, we can give a set of rules.
- Each rule has the form
 \[A : \alpha_1 \alpha_2 \cdots \alpha_n, \quad n \geq 0, \]

 where
 - \(A \) is a symbol that is intended to stand for a language (set of strings)—a metavariable or nonterminal symbol.
 - Each \(\alpha_i \) is either a literal character (like "a") or a nonterminal symbol.

- The interpretation of this rule is

 One way to form a string in \(L(A) \) (the language denoted by \(A \)) is to concatenate one string each from \(L(\alpha_1), L(\alpha_2), \ldots \) (where \(L("c") \) is just the language \{"c"\}).

- This is Backus-Naur Form (BNF). A set of rules is a grammar.

- Aside: You'll see that ':=' written many different ways, such as '::=', '→', etc. We'll just use the same notation our tools use.

Some Abbreviations

- The basic form from the last slide is good for formal analysis, but not for writing.
- So, we can allow some abbreviations that are obviously expandable into the basic forms:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| \(A : \mathcal{R}_1 \mid \cdots \mid \mathcal{R}_n \) | \(A : \mathcal{R}_1 \)
| \(\vdash \) | \(A : \mathcal{R}_n \)
| \(A : \cdots (\mathcal{R}) \cdots \) | \(B : \mathcal{R} \)
| \(A : \cdots B \cdots \) | \(A : \cdots \)
| \(A : [c_1 \cdots c_n] \) | \([c_1 \cdots c_n] \)

(likewise other character classes)

Some Technicalities

- From the definition, each nonterminal in a grammar defines a language. Often, we are interested in just one of them (the start symbol), and the others are auxiliary definitions.
- The definition of what a rule means ("One way to form a string in \(L(A) \) is...") leaves open the possibility that there are other ways to form items in \(L(A) \) than covered in the rule.
- We need that freedom in order to allow multiple rules for \(A \), but we don't really want to include strings that aren't covered by some rule.
- So precise mathematical definitions throw in sentences like:

 A grammar defines the minimal languages that contain all strings that satisfy the rules.
A Big Restriction (for now)

- For the time being, we'll also add a restriction. In each rule:
 \[A : \alpha_1\alpha_2\cdots\alpha_n, \quad n \geq 0, \]
 we'll require that if \(\alpha_i \) is a nonterminal symbol, then either
 - All the rules for that symbol have to occurred before all the rules
 for \(A \), or
 - \(i = n \) (i.e., is the last item) and \(\alpha_n \) is \(A \).

- We call such a restricted grammar a **Type 3 or regular grammar**. The languages definable by regular grammars are called **regular languages**.

Claim: Regular languages are exactly the ones that can be defined by regular expressions.

Proof of Claim (I)

- Start with a regular expression, \(R \), and make a (possibly not yet valid) rule,
 \[R : R \]
- Create a new (preceding) rule for each parenthesized expression.
- This will leave just the constructs \(X^* \), \(X^+ \), and \(X^? \). What do we do with them?

Example

- Consider the regular expression \(("+"|"-")?("0"|"1")^+ \)

1. \(R : ("+"|"-")?("0"|"1")^+ \) **replace with**

2. \(Q_1 : "+" \mid "-" \)
 \(Q_2 : "0" \mid "1" \)
 \(R : Q_1 \mid Q_2^+ \) **replace with**

3. \(Q_3 : \epsilon \mid Q_1 \)
 \(Q_1 : Q_2 \mid Q_2 Q_1 \)
 \(R : Q_3 Q_4 \)
Classical Pattern-Matching Implementation

• For compilers, can generally make do with "classical" regular expressions.
• Implementable using finite(-state) automata or FAs. ("Finite state" = "finite memory").
• Classical construction:

 regular expression ⇒ nondeterministic FA (NFA)
 ⇒ deterministic FA (DFA) ⇒ table-driven program.

Review: FA operation

• A FA is a graph whose nodes are states (of memory) and whose edges are state transitions. There are a finite number of nodes.
• One state is the designated start state.
• Some subset of the nodes are final states.
• Each transition is labeled with a set of symbols (characters, etc.) or ϵ.
• A FA recognizes a string $c_1c_2\cdots c_n$ if there is a path (sequence of edges) from the start state to a final state such that the labels of the edges in sequence, aside from ϵ edges, respectively contain c_1, c_2, \ldots, c_n.
• If the edges leaving any node have disjoint sets of characters and if there are no ϵ nodes, FA is a DFA, else an NFA.

Example: What does this DFA recognize?

![DFA](image)

Bit strings with # of 1's divisible by 2 or 3.

What is the simplest equivalent NFA you can think of?

![NFA](image)

Example: What does this NFA recognize?

![NFA](image)

Strings of capitals ending in ABCDABD.

What is the simplest equivalent DFA you can think of?

![DFA](image)

(Edges without labels mean "any character not covered by another edge.")
Example: What does this NFA recognize?

What is the simplest equivalent DFA you can think of?

Review: Classical Regular Expressions to NFAs (I)

Review: Classical Regular Expressions to NFAs (II)

Extensions?

• How would you translate ϕ (the empty language, containing no strings) into an FA?
• How could you translate 'R?' into an NFA?
• How could you translate 'R+' into an NFA?
• How could you translate $'R_1|R_2|\cdots|R_n'$ into an NFA?
Example of Conversion

How would you translate \((ab)^*|c)^*\) into an NFA (using the construction above)?

![Diagram of an NFA](image)

Review: Converting to DFAs

- **OBSERVATION:** The set of states that are marked (colored red) changes with each character in a way that depends only on the set and the character.

- In other words, machine on previous slide acted like this DFA:

![Diagram of a DFA](image)

DFAs as Programs

- **Can realize DFA in program with control structure:**

```
state = INITIAL;
for (s = input; *s != '\0'; s += 1) {
    switch (state):
    case INITIAL:
        if (*s == 'a') state = A_STATE; break;
    case A_STATE:
        if (*s == 'b') state = B_STATE; else state = INITIAL; break;
    ...}
return state == FINAL1 || state == FINAL2;
```

- **Or with data structure (table driven):**

```
state = INITIAL;
for (s = input; *s != '\0'; s += 1)
    state = transition[state][s];
return isfinal[state];
```
What Flex Does

- Flex program specification is giant regular expression of the form $R_1|R_2|\cdots|R_n$, where none of the R_i match ϵ.
- Each final state labeled with some action.
- Converted, by previous methods, into a table-driven DFA.
- But, this particular DFA is used to recognize prefixes of the (remaining) input: initial portions that put machine in a final state.
- Which final state(s) we end up in determine action. To deal with multiple actions:
 - Match longest prefix ("maximum munch").
 - If there are multiple matches, apply first rule in order.

How Do They Do It?

- How can we use a DFA to recognize longest match?
- How can we use DFA to act on first of equal-length matches?
- How can we use a DFA to handle the R_1/R_2 pattern (matches just R_1 but only if followed by R_2, like $R_1(?=R_2)$ in Python)?