Lecture #41: Topics in Static Analysis: Program Verification

• Previously looked at static analysis, finding properties of programs that don’t depend on the specific input data.

• So far, have seen:
 - Static type checking (are these types consistent?)
 - Type inference (what must the type of this be?)
 - Analyses for optimization (what assignment statements might last have set x’s value?)

• These have all used simple and fast algorithms.

• Today’s example of more ambitious analysis: program verification tries to determine if a program does what it is specified to do.

Specifications

• Starting in the 1960’s, researchers started asking what it meant to “prove” a program.

• First need a statement of what a program does.

• Obvious approach: notate a program with assertions:
 \[
 \{ P \} \; S \; \{ Q \}
 \]
 where P and Q are logical assertions and S is some program text.

• P is a precondition, and Q is a postcondition.

• Above means
 If P is true, S is executed, and S terminates normally, then Q will be true.

• Simple Example:
 \[
 \{ k > 0 \land x \leq y \} \; x = x-k \; \{ x < y \}
 \]

Specifying a Language

• To prove “program assertions” like this, must first come up with axioms for the dynamic semantics of the language.

• One (older, but moderately intuitive) style due to C.A.R. Hoare.

• Start with something easy: For any predicate \(P \),
 \[
 \{ P \} \text{ pass } \{ P \}
 \]

More Obvious Stuff

• Logically entailed assertions may replace other assertions.

 \[
 P \Rightarrow R, \quad \{ R \} S \{ Q \} \\
 \hline \\
 \{ P \} S \{ Q \}
 \]

• The line means “to prove the thing below, show the things on top.”
Sequences

• To concatenate two statements:
 \[
 \{P\}S_1\{R\},\{R\}S_2\{Q\} \\
 \{P\}S_1;\; S_2\; \{Q\}
 \]

If Statements

• Problem: want to demonstrate that
 \[
 \{\; P \;\} \\
 \text{if } C: \\
 S_1 \\
 \text{else:} \\
 S_2 \\
 \{\; Q \;\}
 \]

 Assume that conditional expression \(C\) has no side effects.

 So break into two cases:
 \[
 \{\; P \land C \;\} \; S_1 \; \{\; Q \;\} \\
 \{\; P \land \neg C \;\} \; S_2 \; \{\; Q \;\}
 \]

 and prove both.

 What would case without else look like? Change \(S_2\) rule to
 \[
 P \land \neg C \Rightarrow Q.
 \]

 What would case with elifs look like? Add rules such as
 \[
 \{P \land \neg C_1 \land \neg C_2 \cdots \land C_n\} \; S_n \; \{Q\}
 \]

Assignment Statements

• A bit tricky. We'll consider scalar variables only.

• First, some terminology. If \(P\) is a logical assertion, define \(P[x \rightarrow E]\)
 mean "\(P\) with all free instances of \(x\) replaced by \(E\)."

• For example \((x > y)[x \leftarrow 3]\) is 3 \(> y\).

• Now we can write a "backward rule" for assignment:
 \[
 \{P \Rightarrow Q[x \leftarrow E]\} \\
 \{P\} \; x = E \; \{Q\}
 \]

• Example: to show
 \[
 \{ i > 0 \land x^n = yx^i \} \; y = y\times \{ i > 0 \land x^n = yx^{i-1} \}
 \]

Pitfalls

• Consider our first example:
 \[
 \{ k > 0 \land x \leq y \} \; x = x-k \; \{ x < y \}
 \]

 Problem: It's not valid! Suppose that (mathematically) \(x - k < -2^{31}\).

• The construct \(x-k\) is a "false friend"—it only looks like the mathematical expression \(x - k\), but means something slightly different.

• Could sprinkle all our specifications with additional clauses checking for this, but things quickly become unwieldy.

• So generally, we punt in some way:
 - say that we have proved "modulo overflow"
 - or prove the property separately.

• Another example: a postcondition on a sorting routine that says simply "the array \(A\) is sorted." So is this OK?

 def sort (A): for i in range (0, len (A)): A[i] = i

 In general, how do we know our specification is sufficient?