Lecture #41: Topics in Static Analysis: Program Verification

- Previously looked at static analysis, finding properties of programs that don’t depend on the specific input data.

- So far, have seen:
 - Static type checking (are these types consistent?)
 - Type inference (what must the type of this be?)
 - Analyses for optimization (what assignment statements might last have set x’s value?)

- These have all used simple and fast algorithms.

- Today’s example of more ambitious analysis: program verification tries to determine if a program does what it is specified to do.
Specifications

- Starting in the 1960’s, researchers started asking what it meant to “prove” a program.
- First need a statement of what a program does.
- Obvious approach: notate a program with assertions:

 \(\{ P \} \quad S \{ Q \} \)

 where \(P \) and \(Q \) are logical assertions and \(S \) is some program text.
- \(P \) is a precondition, and \(Q \) is a postcondition.
- Above means

 If \(P \) is true, \(S \) is executed, and \(S \) terminates normally, then \(Q \) will be true.

- Simple Example:

 \(\{ k > 0 \land x \leq y \} \quad x = x-k \quad \{ x < y \} \)
Specifying a Language

• To prove “program assertions” like this, must first come up with axioms for the dynamic semantics of the language.

• One (older, but moderately intuitive) style due to C.A.R. Hoare.

• Start with something easy: For any predicate P,

$$\{P\} \text{ pass } \{P\}$$
More Obvious Stuff

- Logically entailed assertions may replace other assertions.

\[P \Rightarrow R, \quad \{ R \} \vdash \{ Q \} \]
\[\{ P \} \vdash \{ Q \} \]

- The line means “to prove the thing below, show the things on top.”
Sequences

- To concatenate two statements:

\[
\frac{\{P\}S_1\{R\}, \{R\}S_2\{Q\}}{\{P\}S_1; S_2 \{Q\}}
\]
If Statements

• Problem: want to demonstrate that

\[
\begin{align*}
\{ & P \} \\
\text{if } C: & & S1 \\
\text{else:} & & S2 \\
\{ & Q \}
\end{align*}
\]

• Assume that conditional expression \(C \) has no side effects.

• So break into two cases:

\[
\begin{align*}
\{ & P \land C \} & S1 & \{ & Q \} \\
\{ & P \land \text{not } C \} & S2 & \{ & Q \}
\end{align*}
\]

and prove both.

• What would case without \text{else} look like?

• What would case with \text{elifs} look like?
If Statements

• Problem: want to demonstrate that

\[
\begin{array}{l}
\{ P \} \\
\text{if } C: \\
\quad S1 \\
\text{else:} \\
\quad S2 \\
\{ Q \}
\end{array}
\]

• Assume that conditional expression \(C \) has no side effects.

• So break into two cases:

\[
\begin{array}{l}
\{ P \land C \} \ S1 \ { Q } \\
\{ P \land \text{not } C \} \ S2 \ { Q }
\end{array}
\]

and prove both.

• What would case without \texttt{else} look like? Change \(S2 \) rule to \(P \land \text{not } C \Rightarrow Q \).

• What would case with \texttt{elifs} look like?
If Statements

• Problem: want to demonstrate that

\[
\{ \ P \ \} \\
\text{if } C:\ \ \\
\quad S1 \\
\text{else:} \\
\quad S2 \\
\{ \ Q \ \}
\]

• Assume that conditional expression \(C \) has no side effects.

• So break into two cases:

\[
\{ \ P \land C \ \} \ S1 \ { \ Q \ \}
\]
\[
\{ \ P \land \text{not } C \ \} \ S2 \ { \ Q \ \}
\]

and prove both.

• What would case without \textbf{else} look like? Change S2 rule to \(P \land \text{not } C \Rightarrow Q \).

• What would case with \textbf{elifs} look like? Add rules such as

\[
\{ P \land \text{not } C1 \land \text{not } C2 \cdots \land Cn \} \ S_n \ { Q \}
\]
Assignment Statements

• A bit tricky. We’ll consider scalar variables only.
• First, some terminology. If P is a logical assertion, define $P[x \rightarrow E]$ mean “P with all free instances of x replaced by E.
• For example $(x > y)[x \leftarrow 3]$ is $3 > y$.
• Now we can write a “backward rule” for assignment:

\[
\frac{\{ P \Rightarrow Q[x \leftarrow E] \}}{\{ P \} \ x = E \ {Q}}
\]

• Example: to show

\[
\{ \ i > 0 \land x^n = yx^i \ \} \ y = y*x \ \{ \ i > 0 \land x^n = yx^{i-1} \ \}
\]
Pitfalls

• Consider our first example:

\[
\{ \ k > 0 \land x \leq y \ \} \ x = x - k \ \{ \ x < y \ \}
\]

Problem: It’s not valid! Suppose that (mathematically) \(x - k < -2^{31} \).

• The construct \(x-k \) is a “false friend”—it only looks like the mathematical expression \(x - k \), but means something slightly different.

• Could sprinkle all our specifications with additional clauses checking for this, but things quickly become unwieldy.

• So generally, we punt in some way:
 - say that we have proved “modulo overflow”
 - or prove the property separately.

• Another example: a postcondition on a sorting routine that says simply “the array \(A \) is sorted.” So is this OK?

 \[
 \text{def sort (A): for i in range (0, len (A)): A[i] = i}
 \]

In general, how do we know our specification is sufficient?