
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger

Spring 2008

Project #1: Lexer and Parser for Pyth

Due: Friday, 29 February 2008 at 2400

Our first project is to write a lexer and parser for Pyth. This parser will take a source
file and produce an abstract syntax tree (AST) that it will output as text to be read back
by the next stage of the compiler.

Your team has space in the class Subversion repository that the staff will maintain, and
you will eventually hand in your project by creating a tag for it. Again, we’ll expect you
to use the repository during development, frequently storing versions so that we can see
how you’re doing (and, of course, so you can get all the usual advantages of version-control
systems).

You may implement your solution in either C++ or Java. You may use the parsing
tools Flex and Bison (for C++) or JFlex and JBison (for Java), or you may write the
whole thing “by hand,” as a recursive-descent compiler.

Your job is to hand in a program (the parser and its testing harness), including adequate
internal documentation (comments), and a thorough set of test cases, which we will run
both against your program and everybody else’s.

1 Running your solution

The program we’ll be looking for when we test your submission is called ParseTest. Our
script will look to see whether the compilation process produces a file ParseTest.class

(indicating that we need to use the Java interpreter to run it) or ParseTest (indicating
that we don’t). In either case, the argument list will be the same. For a C++ program,
for example, we will expect that the command

./ParseTest SEARCH-PATH FILE1.py FILE2.py ...

1

Project #1 2

will compile a program consisting of the concatenation of files FILEi.py in order, using
SEARCH-PATH as the list of directories in which to search for imported files (see the “im-
port” command in the Pyth documentation). Following a Unix convention, the directories
in SEARCH-PATH are separated by colons (:), as in

ParseTest .:includeDir:lib/myLibraryDir myprog.py

A statement in your Pyth program such as

import math

will look for a file math.py first in the current directory (.), then in includeDir, and then
lib/myLibraryDir, in that order, taking the first that it finds.

2 Output

Your ParseTest program should produce, on the standard output, a representation of the
corresponding AST, using the abstract syntax and format given below. Actually, this is
the same output that we will use as input to the next stage of the compiler, so I expect
ParseTest to be extremely simple. We are communicating information between phases in
this fashion, by the way, rather than using something more efficient (like a shared data
structure between compiler phases) in order to make it easy both to look at the output
from the parser in isolation and to glue your parser together with any implementation of
later compiler phases, regardless of the languages in which the two are written.

Suppose that the file foo.py contains the following text:

This is a small test program

import defns

if i:

print i, s, t

else:

pass

and lib/defns.py contains

i = 3

s = i + 2; t = s ** 2

Then the command

ParseTest .:lib foo.py or java ParseTest .:lib foo.py

should produce the following output on the standard output:

Project #1 3

(program 0 0

[(assign 1 1 (id 1 1 "i") (int 1 1 "3"))

[(assign 1 2 (id 1 2 "s")

(call 1 2 (id 0 0 "__add__")

[(id 1 2 "i") (int 1 2 "2")]))

(assign 1 2 (id 1 2 "t")

(call 1 2 (id 0 0 "__pow__")

[(id 1 2 "s") (int 1 2 "2")]))]

(if 0 3 (id 0 3 "i")

[(print_newline 0 4 (id "None") [(id 0 4 "i") (id 0 4 "s") (id 0 4 "t")])]

[])

]

[(file 0 0 "foo.py") (file 0 0 "lib/defns.py")])

That is, this is all in Lisp-like notation. Parenthesized items represent tree nodes. Each
node has the form

(operator file-number line-number operand1 · · ·operandn)

The file-number identifies which source file contained the text that translated into this
node, and line-number identifies the line in that file. The operands are either tree nodes,
quoted strings, or lists of tree nodes. Square-bracketed items represent lists of tree nodes.
Quoted strings will use four-character octal escape sequences in place of all double quotes
(\042), backslashes (\134), and all characters with ASCII codes less than 32 (\000–\037).
They will not contain any other escape sequences. Thus, what appears in a program as

"Input file: C:\\FOO contains\t\"Hello, world!\"\n"

gets written out as

"Input file: C:\134FOO contains\011\042Hello, world!\042\012"

The complete output consists of a list of program statements followed by a list of file
names, with file 0 first, then file 1, etc.

In fact, you have considerable latitude in laying this out. We will test the trees you
output by running them through an “unparser” that we will supply, which will try to
reconstruct an approximation of the original program. This is not a perfect test by any
means, but we think it might make it easier for you to see errors. Whitespace (blanks
and newlines) before and after parentheses, square brackets, and quoted items is optional,
and any non-empty amount of whitespace may separate identifiers such as “assign” and
source position numbers from each other.

In general, the line number to associate with a construct is the line number of the token
that starts it. We are not going to be terribly fussy about this, but your line number should
be reasonable. When identifiers are introduced by the parser that are not represented in
the source text, it assigns them file 0 and line 0 as shown.

Project #1 4

Your parser should detect and report syntax errors (on the standard error output) using
the standard Unix format:

foo.py:5: syntax error

Also arrange that if the parser (or lexer) detects any errors, the program as a whole exits
with a non-zero exit code when processing is complete. Your program should always recover
from errors by simply printing the message, throwing away some erroneous program text
(which can be quite a bit in the case of unterminated strings) and trying to continue as
helpfully as possible. However, the precise tree you produce in the presence of syntax or
lexical errors is irrelevant.

In general, you will want the lexer part of your project to catch malformed tokens,
while the parser catches malformed combinations of tokens. Lexical errors include:

• Singly quoted strings that aren’t complete by the end of the line;

• Triply quoted strings that aren’t complete by the end of the file that contains them;

• Integer constants that are too large;

• Characters that cannot be interpreted as tokens (e.g., ’ !’).

• import statements that refer to non-existent files.

• Any use of reserved words (such as assert) that are not used in Pyth, but are not
allowed as identifiers (see the list of keywords in the Pyth document).

• Inconsistent indentation.

3 Abstract Syntax Trees

The abstract syntax operators to be output by your parser are as given in Table 1 (ex-
pressions), Table 2 (statements), and Table 3 (definitions and types). In each case, we
show just the operator and operands, eliding the source-position numbers for brevity. For
a language construct c, the notation ĉ means “the AST that c translates to.”

The program as a whole is to be represented as the tree

(program 0 0

[statements]

[(file 0 0 "filename0) (file 0 0 "filename1") ...])

where statements are the ASTs that the outer-level statements of the program translate to
and the filenames are the names of file 0, file 1, etc., as used in the position information.

Project #1 5

Note #1: Statement lists. For convenience in translation, you may freely group mul-
tiple statements into lists of single statements wherever convenient. For example, feel free
to translate the “then” part of

if x > 0:

Statement1; Statement 2; Statement 3;

Statement4

into any of the lists

[Tree1 Tree2 Tree3 Tree4],

[[Tree1 Tree2 Tree3] Tree4], or even

[Tree1 [Tree2 Tree3] [Tree4]]

where Treei is the AST for Statementi.

Note #2: Pass statement. Likewise, feel free to eliminate extraneous pass nodes
(which translate to empty lists):

pass; Statement1

pass

Statement2

Can translate to just

[Tree1 Tree2]

This simplification is not obligatory (it’s not even worth extra credit!).

Note #3: Complex assignment. Table 1 only shows the translation for simple as-
signments with one item on the left-hand side. Translate more complex left-hand sides as
follows. The assignment

L0, L1, . . . , Ln−1 = E or (L0, L1, . . .) = E

translates to the tree

(assigns [Â0 Â1 · · · Ân−1] Ê)

where Âi is the translation of Ai = RHSi and RHSi translates to (getrhs (int i)). E.g.,

x, a[0] = L =⇒

(assigns [(assign (id "x") (getrhs (int "0")))

(call (id "__setitem__") [(id "a") (int "0")

(getrhs (int "1"))])]

(id "L"))

We suggest that you handle assignments by parsing them as if the left-hand sides could
be any expressions, and then have a separate function specifically intended to transform
them into the proper forms (and also to flag errors such as x+3=4).

Project #1 6

Table 1: AST nodes for expressions, part 1.

Construct AST Notes

identifier (id "identifier")

integer literal (int "n") where n is the decimal represen-
tation of the integer literal (non-
negative).

float literal (float "x") where x is the source text of the lit-
eral.

”string literal” (string "string literal")

(e1, . . . , en) (tuple [ê1 · · · ên]) Includes (e,) but not (e). Also
includes tuple lists without paren-
theses, as in the right side of “x =

1,2,3”.
[e1, . . . , en] (list [ê1 · · · ên])

{k1 : v1, . . . , kn : vn} (dict [(pair k̂1 v̂1)...

(pair k̂n v̂n)])

F(e1, . . . , en) (call F̂ [ê1 · · · ên])
e.i (select (id "i") ê)

e1[e2] (call (id " getitem ")

[ê1 ê2])

e1[e2 : e3] (call (id " getslice ")

[ê1 ê2 ê3])

e1[e2 :] (call (id " getslice ")

[ê1 ê2 MAX]) where MAX is the maximum inte-
ger.

not e (not ê)

e1 and e2 (and ê1 ê2)

e1 or e2 (or ê1 ê2)

Project #1 7

Table 1: AST nodes for expressions, part 2.

Construct AST Notes

e1 in e2 (call (id " contains ")

[ê2 ê1])

e1 not in e2 (not ê) where ê is the translation of e1 in

e2

e1 is e2 (is ê1 ê2)

e1 is not e2 (not (is ê1 ê2))

e1 ≺ e2 (compare (id "≺̂") [ê1 ê2]) ≺ is one of the comparison opera-
tors <, >, <=, >=, ==, !=. ≺̂ is
the function-call equivalent accord-
ing to Table 3 in the Pyth manual.

e1 ⊕ e2 (call (id "⊕̂") [ê1 ê2]) ⊕ is a binary operator other than
one handled above. ⊕̂ is the
function-call equivalent according
to Table 3 in the Pyth manual.

⊕e (call (id "⊕̂") [ê]) ⊕ is a unary operator other than
one handled above. ⊕̂ is the
function-call equivalent according
to Table 3 in the Pyth manual.

Project #1 8

Table 2: AST nodes for statements

Construct AST Notes

s1;...sn [ŝ1 · · · ŝn] Statement lists include statements sep-
arated by explicit semicolons, as well
as those separated by newlines. That
is, s1; s2 has the same encoding as
s1 <newline> s2. See Note #1.

pass [] See Note #2.
v1 = e2 (assign v̂1 ê2) where v1 is a simple variable. e2 may be an

expression or other assignment. See Note
#3.

e1.i = e2 (setselect (id "i") e1 e2)

e1[e2] = e3 (call (id " setitem ")

[ê1 ê2 ê3])

e1[e2:e3] = e4 (call (id " setslice ")

[ê1 ê2 ê3 ê4])

e1[e2:] = e3 (call (id " setslice ")

[ê1 ê2 MAX ê3])

v1 ⊕= e2 (assign v̂1 êr) êr is the translation of v1 ⊕ e2. ⊕ is one
of the arithmetic operators.

return e (return ê)

return (return (id "None"))

break (break)

continue (continue)

print e1, . . . , en (print newline

(id "None")

[ê1 · · · ên])
print e1, . . . , en, (print (id "None")

[ê1 · · · ên])

print >>F, e1, . . . , en (print newline F̂

[ê1 · · · ên])

where F is an expression yielding a file ob-
ject.

print >>F, e1, . . . , en, (print F̂ [ê1 · · · ên])

if e: S1 else: S2 (if ê Ŝ1 Ŝ2) S1 and S2 are statement lists.

if e: S1 (if ê Ŝ1 [])

while e: S1 else: S2 (while ê Ŝ1 Ŝ2)

while e: S1 (while ê Ŝ1 [])

for v in e : S1

else: S2

(for v̂ ê Ŝ1 Ŝ2) v is an identifier.

for v in e : S1 (for v̂ ê Ŝ1 [])

Project #1 9

Table 3: AST nodes for declarations and types

Construct AST Notes

def i = e (defconst (id "i") ê)

def i0 (i1, . . . , in): S (defun (id "i0")

[(id "i1") ...(id in)] Ŝ)

class def i0 (i1, . . . , in):

S

(class defun (id "i0")

[(id "i1") ...(id in)] Ŝ)
def i0 (i1, . . . , in):

import "name"

(defun native

(id "i0")

[(id "i1") ...(id in)]

(string "name"))
class def i0
(i1, . . . , in):

import "name"

(class defun native

(id "i0")

[(id "i1") ...(id in)]

(string "name"))

class i(t): S (class (id "i") (id "t") Ŝ)

global i1, . . . , in (global

[(id "i1")...(id "in")])
i : T (type decl (id "i") T̂) Where T̂ is an encoded type,

as described in the following en-
tries.

i (as a type) (type (id ”i”))
(t1, . . . , tn) -> t0 (func type [t̂1 · · · t̂n] t̂0)

Project #1 10

4 What to Turn In

The directory you turn in (see §5) should contain a file Makefile that is set up so that

gmake

(the default target) compiles your program and

gmake check

runs all your tests against your program. We’ll put sample Makefiles (for C++ and Java)
in the ~cs164/hw/proj1 directory and the staff project 1 repository:

svn+ssh://cs164-tj@nova.cs.berkeley.edu/staff/proj1

Feel free to modify at will as long as these two gmake commands continue to work on the
instructional machines.

Because we want to run your tests against everyone else’s program, we’d like you
to adhere to a standard format. In the directory you submit, have a subdirectory called
parser-tests. Under that, have two subdirectories full of .py files: parser-tests/correct
and parser-tests/errors. For each file parser-tests/correct/foo.py, have another
file parser-tests/correct/foo.py.out, with the output that ParseTest is supposed to
produce. The first set of tests will be: if we run ParseTest with arguments

parser-tests/correct:parser-tests parser-tests/correct/foo.py

does it succeed (exit normally), print nothing on the standard error output, and produce
the same output as in the corresponding .out file (modulo whitespace, as discussed above).
The second set of tests will be: if we run ParseTest with arguments

parser-tests/errors:parser-tests parser-tests/errors/foo.py

will we get at least one error message on the standard output and will the program exit
with exit code 1 (the usual way to indicate a compilation error)?

Not only must your program work, but it must also be well documented internally.
At the very least, we want to see useful and informative comments on each method you
introduce and each class.

5 How to Submit

We’ve set up a Subversion repository for your team, initially containing just the subdirec-
tory tags under it. The usual practice is to create a trunk directory in which you keep
the latest “wavefront” version of your project files, and make “cheap” copies of significant
versions of the trunk in the tags directory. The staff can see everything you check in.

Project #1 11

Anything you put in the tags directory with a name of the form proj1-N we will treat as
a submission (the ‘N’ is a release number); and the one with the highest N we will treat
as your latest “official” submission.

Let’s assume that you have checked in a satisfactory working version of your project to
the trunk subdirectory, and want to submit it. The command

svn copy svn+ssh://cs164-tj@host/myteam/trunk \

svn+ssh://cs164-tj@host/myteam/tags/proj1.1

-m "First submitted version of project 1"

does the job. Here, myteam is your team’s name, and host is on of the instructional
servers (e.g., nova.cs.berkeley.edu). Alternatively, from within the working directory that
contains checked-out versions of the trunk and tags subdirectories, you can issue the two
commands:

svn copy trunk tags/proj1-1

svn commit -m "First submitted version of project 1"

and get the same effect.
Submit early and often (at least up to the deadline). Don’t worry about using up file

space with lots of submissions. Subversion does not actually copy your files; it just makes
notations that tell it that they’re the same files as in version such-and-such of the trunk.

6 Assorted Advice

First, get started as soon as possible. Second, don’t ever waste time beating your head
against a wall. If you come to an impasse, recognize it quickly and come see one of us or, if
we are not immediately available, work on something else for a while (you can never have
enough test cases, for example). Third, keep track of your partner. If possible, schedule
time to do most of your work together. I’ve seen all too many instances of the Case of the
Flaky Partner.

Learn your tools. You should be doing all of your compilations using gmake, Eclipse,
or some other IDE. Get to know this tool and try to understand the “makefiles” we give
you, even if you don’t use them. These tools really do make life much easier for you. Learn
to use the gdb and gjdb debuggers (also usable from within Emacs), or the equivalent in
Eclipse or your favorite IDE. In most cases, if your C++ program blows up, you should
be able to at least tell me where it blew up (even if the error that caused it is elsewhere).
I do not look kindly on those who do not at least make that effort before consulting me.
Use your Subversion repository to coordinate with your partner and to save development
versions frequently.

Don’t forget test cases. You can start writing them before you write a line of code.

	Running your solution
	Output
	Abstract Syntax Trees
	What to Turn In
	How to Submit
	Assorted Advice

