
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger

Spring 2008

Project #3: Code Generation

Due: Friday, 9 May 2008

The third project brings us to the last stage of the compiler, where we generate machine
code. Beginning with the AST we produced in Project #2, you are to generate ia32 assembly
code that will be assembled into a working program.

You’ll find skeleton and supporting files in ~cs164/hw/proj3 and in the staff/proj3

subdirectory of the repository. We have included a parser and semantic analyzer that will
provide trees properly annotated with declarations and types. You may also supply your own,
if desired.

You can expect updates along the way (to make your life easier, one hopes), so be sure
to consult the Project #3 entry on the homework webpage from time to time, as well as the
newsgroup, for details and new developments.

1 The Machine

We’ll be using the ia32 architecture (as the family that includes the 32-bit Intel processors is
called). We have provided you with an online, tutorial-style introduction (from Robert B. K.
Dewar of NYU), and official Intel documentation. You can use the GCC compiler to look at
what C code translates to:

gcc -S -g foo.c

which produces a file foo.s. Our pythc script will translate assembly-language programs you
produce using a command like

gcc -o myprog -g myprog.s runtime.o

This should work on the instructional machines (those using Intel architecture, that is), and
on Intel-based GNU/Linux, MacOS X, and Cygnus installations. Furthermore, with this
particular choice of options, the GNU debugger, GDB, will allow you to single-step through
the assembly-language program while viewing the assembler source, and will also allow setting
breakpoints and examining registers and variables.

Only some of the instructional servers use the ia32 architecture (rhombus, pentagon, cube,
sphere, po, torus run i86pc Solaris, and ilinux[1-3].eecs run Fedora GNU/Linux). You can ssh
into them as usual from home or from other instructional machines. You’ll get error messages
if you try to run your compiler on the wrong architecture.

1

Project #3 2

2 The Runtime System

The pythc script included in the skeletons will link the code you generate with our runtime
system (written in C), which provides:

• the main procedure,

• implementations of native methods,

• functions for constructing dictionaries, lists, and tuples,

• a function to create an object,

• functions for printing, type conversion, and assorted other primitive operations called
for by the semantics,

• and the garbage collector.

On the instructional machines, we centrally maintain a compiled version of the runtime library,
a compiler that performs parsing and static analysis, the standard prelude, and the file sys.py,
containing the definitions in sys. When you work on the instructional machines, you won’t
need to (indeed should not) have copies of any of these; the pythc script will find them. At
home, you’ll need to check out these files as described in the README that comes with the
Project #3 files in the staff repository.

We’ll maintain online documentation of the runtime system and of the runtime data
structures used for functions, built-in types, and so forth. See the Project #3 entry on the
homework page for a link to the runtime documentation.

3 What Your Compiler Must Do

Your main program will read the tree produced by parsing and static semantics. This time,
of course, the methods on the AST nodes will be concerned with code generation rather than
static semantics, but otherwise things will be largely analogous to those in Project #2.

The output from your program will be assembly language in gas format (the GNU as-
sembler). It should comprise the following:

1. Instructions that implement all of your functions, plus one special function for the main
program. For the most part, these will look like the instructions produced for ordinary
C functions, and you can use gcc -S to give yourself hints about what they should look
like.

2. The virtual tables for all classes.

3. The exemplars for all classes (i.e., the static variables from which new instances are
created). The built-in types have no instance variables or class variables, so each of
these will consist only of a type pointer (virtual-table pointer).

4. Tables describing each class and each stack frame, for use by the garbage collector.
Basically, these tell the runtime system where to find all the roots (see the garbage-
collection lectures) and all pointer attributes of objects. Again, their format will be

Project #3 3

documented in on-line notes. You don’t write the garbage collector; it’s part of the
code we supply. Our garbage collector is not fully automatic, but only runs when called
via a certain native method. That should slightly decrease the obscurity of the bugs
caused by errors.

4 Optimization

There are a few opportunities for optimization relative to naive implementations of Pyth. We
do not require that you do the clever thing, but we will be holding an execution-speed contest,
and might even be persuaded to give a point or two to the fastest-running Pyth programs.
Actually, it should require only modest effort to leave the standard Python implementation
in the dust (on suitably chosen benchmarks).

You can’t really do much except for things whose static types you know (and therefore
whose representation you know). For example, if you know that something is an Int, there’s
a great deal you can do (since Pyth simply uses Java semantics for integers). For example,
in the program

x: Int; y: Int

x = 0; y = 0

while x < 1000:

y += x; x += 1

the additions to y and x can be performed by addl and incl instructions. If you know that
the controlling expression of a for loop is an Xrange, you could turn that loop into an ordinary
C-style for loop.

The insanely ambitious among you might consider doing real optimization—common-
subexpression elimination, invariant code motion, constant folding, and the like. We really
don’t recommend this, however, since you’ll have more than enough to do as it is.

5 Output and Testing

For once, testing is going to be straightforward. Your test cases should be statically correct
Pyth programs (they may cause runtime errors, but they should get past the first two phases of
the compiler). Testing should consist of making sure that the programs successfully compile,
that they execute without crashing, and that they produce the correct output. As always,
testing will be an important part of your grade.

6 What to turn in

You will be turning in four things:

• Source files.

• A script file called pythc that glues together the pieces to produce a complete compiler.
We’ll supply a version of this script that should work for most of you, but you are free
to modify it as needed. Please make sure it works on the instructional machines before
turning it in.

Project #3 4

• A testing subdirectory containing Pyth source files and corresponding files with the
correct output.

• A Makefile that provides (at least) these targets (make sure they actually work on the
instructional machines):

– The default target (built with a plain gmake command) should compile your pro-
gram, producing an executable program that your pythc script will run.

– The command gmake check should run all your tests against your compiler and
check the results.

– The command gmake clean should remove all generatable files (like .class or .o
files) and all junk files (like Emacs backup files).

7 What We Supply

As usual, we have skeleton directories for you to start with in the staff repository. Choose
either the java or c++ subdirectories to copy as your trunk. Also, take a look at the README
file in staff/proj3/README.

You’ll find a number of files in ~cs164/lib/proj3 on the instructional machines that
your pythc will reference automatically. These include provided pyc.parser and pyc.semant

packages, the standard prelude, the file sys.py, and the runtime library. These are also the
repository under staff/proj3/lib/proj3. See the directions in the README file. No doubt
we’ll be modifying a few things (again, in an attempt to make your life easier), so watch for
on-line announcements

8 Assorted Advice

What, you aren’t finished yet? First, get to know the machine and assembly language by
reading the documentation on the ia32 and experimenting with C programs on GCC. The
problem in dealing with assembly language, of course, is that errors can have really obscure
consequences. The GDB debugger has an interface very similar to GJDB (not accidentally);
its documentation is available through Emacs. The command stepi steps over a single
instruction. You can use p/i $pc to print the instruction that is about to be executed; or
use display/i $pc to set things up so that the next instruction is printed after each stepi.
The debugger can display registers (with p $eax, for example).

You should definitely start writing lots of Pyth test programs, many of which you can test
with Python.

Again, be sure to ask us for advice rather than spend your own time getting frustrated
over an impasse. By now, you should have your partners’ phone numbers at least. Keep in
regular contact.

Be sure you understand what we provide. Our software actually does quite a bit for you.
Make sure you don’t reinvent the wheel.

Keep your program neat at all times. Keep the formatting of your code correct at all
times, and when you remove code, remove it; don’t just comment it out. It’s much easier to

Project #3 5

debug a readable program. Afraid that if you chop out code, you’ll lose it and not be able to
go back? That’s what Subversion is for. Archive each new version when you get it to compile.

Write comments for classes and functions before you write bodies, if only to clarify your
intent in your own mind. Keep comments up to date with changes. Remember that the idea
is that one should be able to figure how to use a function from its comment, without needing
to look at its body.
You still aren’t finished?

	The Machine
	The Runtime System
	What Your Compiler Must Do
	Optimization
	Output and Testing
	What to turn in
	What We Supply
	Assorted Advice

