CS 164, Spring 2008 Pyth Run-Time Structures P. N. Hilfinger

Version 3.3, 7 May 2008

This document describes the assumptions made by the Pyth run-time about the representation
of objects, values of variables, functions, virtual tables, and stack frames. User code generated by
the compiler must conform to these assumptions, on pain of extremely obscure errors.

1 Values

Values (and thus variables) in Pyth are 12 bytes long and consist of a pointer and additional data,
depending on the dynamic type of the value, as shown in Figure [l
This representation is rather wasteful due to several interacting considerations:

e All values require dynamic type information.

e We want primitive values (integers, floating-point values) to be “unboxed.” That is, we want
their numeric values to be stored in variables directly, rather than on the heap. This avoids
doing allocation when doing arithmetic.

e Float values require 8 bytes of data beyond that required to hold the dynamic type.

Each kind of value starts with a pointer to an object that contains (at least) information about
the dynamic type. This value is the same for all Ints (a pointer to a unique “Int object” that contains
just a type pointer), and similarly for Floats. The object pointers for function values serve only to
give information about their argument types (see §l). The object pointer for the value None is 0,
which distinguishes it from all other values.

After the object pointer, Ints and Floats contain their actual integer or floating-point values.
Function values contain the static link and code address needed to call them. The 8 bytes after the
object pointer is unused for other types.

The values in the unused portions are unspecified; they may contain anything at all, and need
not be assigned to when copying or forming values.

2 Objects, Classes, and Type Descriptors

All objects pointed to from values consist of a type tag— which is a pointer to a type descriptor—and
zero or more 12-byte value slots containing the instance variables. In the case of predefined classes,
the contents of the object, aside from the type-descriptor pointer, are implementation defined, and
need not consist of ordinary Pyth values. If an object has no instance variables, it contains just the
type tag. See Figure 21

The instance variables of an object start with all instance variables inherited from the parent, in
the same order. Constant attributes (defined by def) are not stored in instances. Put them anywhere
in writable static storage (the “data section”).

A type descriptor contains various information about a type, which is used for a variety of
purposes:

e To implement method calls;

Pyth Run-Time Structures

12

Figure 1: Representation of values in Pyth.

Function value

0 0
0 &__obj Int &__obj_Float
4 4
N
unused 8 X
unused
12 12
The value None Integer value N Float value X
0 Address ot 0
function P
descriptor 4
Static link
unused
Code address
12

Pointer to object
at address P
(all other types)

Pyth Run-Time Structures

Figure 2: Representation of a user-defined object.

0
type
descriptor
4
instance var
#0
16

instance var

#1

28

Pyth Run-Time Structures 4

e To indicate dynamic type for the purposes of type checking;

e To indicate the number and types of function arguments for use when calling functions whose
static type is Any; and

e To give the garbage collector necessary information.

You must create type descriptors for all types, including the pre-defined ones. Suppose that type T
has parent type P (0 for type Any), contains M instance methods (including inherited ones) whose
code addresses are fi, fa,... far; and V instance variables (including inherited ones); In assembly
language, the descriptor for type T looks like this:

.section .rodata
L1:
.string " # Name of class
.align 4
.globl __typ_T
__typ_ T
.long L1 # Pointer to type name.
.long __typ_P # Parent’s descriptor
.long __obj_T # Pointer to exemplar for this type (see below)
.long V # Number of instance variables
.long M # Number of instance methods
Method (or virtual) table
.long fi
.long fo
.long Iy

(The local name .L1 is arbitrary; any local label will do.) The method table contains only function
code addresses, not static links, because methods are never nested, and their static links are ignored.
When method & is implemented by a native function (import ”F”), fi is simply F. Otherwise, it is
the code label of the appropriate method, as generated by your compiler.

Class (static) variables go into static storage. You can give them any assembly-language names
you want (that don’t clash with other names, of course). Here, we’ll just use arbitrary local label
names.

According to the rules of Pyth, the class variables include constants defined by def (asin “def pi
= 3.14159265") plus one class variable for each instance variable. For all non-function types other
than Any and Void, there is one distinguished object of that class, called the class exemplar. Your
code must allocate it in initialized static storage (rather than the heap), give it the label __obj_C,
where C' is the name of the type, and (as shown above) include a pointer to it in the type descriptor
for C. (You can do this for types Any, Void, List, Dict, File, Xrange, or Bool as well, but the
object will never be used). The exemplar will look just like an ordinary object of its type and all its
variables will be initialized to the value None. It is this object that is referenced when creating new
objects and by references to class variables that correspond to instance variables.

For example, suppose we have defined

Pyth Run-Time Structures 5

class A (Object):

x =3 # Assigns to the x defined in the class exemplar
def cl1 = 12

A.x =17 # Same here.

class B (A):
y =4

Suppose also that your compiler has chosen the labels .L2, .L3, .L4, and .L5, respectively, for A.x,
B.x, B.y, and A.c1. Then we’ll have two objects in static storage defined like this (in assembler):

.data
.align 8
.globl __obj_A
__Obj_A:
.long __typ_A
.L2: # A.x
.long 0
.long 0
.long 0
L5: # A.cl
.long 0
.long 0
.long 0
.globl __obj_B
__0bj_B:
.long __typ_B
Place where B.x would go. Not used.
.long 0 # Not used
.long 0 # Not used
.long 0 # Not used
.L4: # B.y
.long 0
.long 0
.long 0

Your code will subsequently set the contents of .L2 to the Int value 3, .L4 to the Int value 4, and
.L5 to the Int value 12. Because type B inherits instance variable x from A, there is no separate B.x
per se. We leave this space blank. When the runtime system creates objects of type B, it will copy
the contents of A’s exemplar object into the beginning of the new object (this is not what Python
does, but it is what Pyth does).

3 Built-in Types

Again, you create the type descriptors for built-in classes just as for ordinary classes. Objects of
the built-in types start with an ordinary type tag, but the rest of their contents are generally not

Pyth Run-Time Structures 6

definable in Pyth. They have no program-accessible variable attributes. They may be created and
manipulated entirely by their methods, so you don’t really need to know the contents, except for
Strings, whose layout you need to translate into string literals. This is easily shown by example. The
object pointed to by the String value for the literal "Hello, world" may be translated

.section .rodata
.align 4

.L6:
.long __typ_String
.long 12 # Length
.string "Hello, world"

For convenience for use with the C library, we use null-terminated string values.

4 Functions, Methods, and Function Descriptors

Besides their declared parameters, Pyth functions take a static link value as their first parameter.
Actually, there are two initial parameters: a pointer to space in which to put the return value
and a static link. Instance methods and functions at the outer level do not use their static links.
The parameters must be there anyway (to avoid confusing the garbage collector), but you need not
initialize their storage. For example, after pushing the first declared parameter on the stack (the first
parameter is pushed last), you can call an outer-level function with label L with the calling sequence

subl $4, ‘esp # Unused static link
leal N (Yesp), ‘heax # Return-value address
pushl heax

call L

where N is the offset from static link of the return-value area.
All Pyth functions maintain a frame pointer, and must push the previous value of the frame
pointer and establish a new one as their first instructions, using the usual sequence:

pushl %ebp
movl %esp,’%ebp

undoing this on return withll:

leave
ret $4

The $4 here has to do with the pointer to space for the return value (see below).

Local variables, compiler temporaries, and parameters to function calls all go below (at lower
addresses than) the saved frame pointer on the stack. We'll call this area (between the saved frame
pointer and the top of the stack) local storage. You can do what you want with this area (including
expanding or contracting it) as long as, just before each function call, local storage consists of an

"Where there’s a ‘leave’ there must be an ‘enter,” you might think. Quite true, and it does what you’d expect and
much more. Turns out the pushl, movl sequence is shorter, however—a wonderful example of CISCness.

Pyth Run-Time Structures 7

integral number of valid values, plus (possibly) the static link and return pointer at the top of the
stack. Together, these make it possible for the garbage collector to find all roots on the stack.

We use the standard method of returning a structure value from a function in C. The address of
the value is the (implicit) first argument of the function. For an n-parameter function, it is convenient
to put the 12-byte return value at the stack position that would have held the n/+»1th parameter.
The calling program must allocate space for this return value. So, if you have an outer-level function
declared:

def £ (x):
return 3

You might call £(42) with

subl $12, Yesp # Allocate return variable on stack

movl $0, (%esp) # Initialize to None for garbage collector
Push argument 42

subl $12, %esp # Reserve space

movl $__obj_Int, (%esp)

movl $42, 4(%esp)

subl $8, ‘hesp # Reserve space for implicit arguments

leal 20 (%esp), heax # Compute address of return value...

movl %heax, (%esp) # and store it.

call £

addl $16, %esp

We reserved space for a static link argument (the second argument, at offset 4 from the stack
pointer just before calling), but didn’t bother to initialize it, knowing the £ doesn’t need it. That
final addl operation pops everything off the stack except the return value, which remains at the top
of the stack. We pop 16 bytes (containing the argument value 42 and the static link) rather than
20 because the called function pops that first argument when it returns, for some obscure reason or
another. Inside the code for f, the argument x will start at offset 16 from the frame base pointer
(%ebp) and the address of the return variable will be at offset 8 from the frame base pointer. So, you
could return the value 3 like this:

movl 8(%ebp), %eax

movl $__obj_Int, (%eax)

movl $3, 4(heax)

leave

ret $4 # This pops off address of return value, too

The arguments passed to a function must always conform to that function’s static type. In cases
like these:

def f (x, y): return x + y
def g (x, y): return x + y
g: (Int, Int) -> Int
print £(3,4), g(3,4)

Pyth Run-Time Structures 8

there is no problem, since the compiler knows that £ and g take two parameters and that the types
of the actual parameters (Int) is a subtype of the formals (Any and Int, respectively). But in this
case:

r=g
print r(3,4)

the static type of r is Any, and the run-time system must decide whether it is legal to call r.

The object-pointer part of the value r points to this information. Each time you create a function,
you generate not only its code, but also a special function-descriptor object. Consider a function, g,
with n parameters having types 11, ...,7T;, and return type Tp. If you have generated the local label
.L7 as its assembler name, its function descriptor has the following format:

.section .rodata
.align 4
LT
.long .+4 # Pointer to the descriptor proper
.long 0 # A null class name indicates a function
.long n # Argument count
.long __typ_Tp # Return-type descriptor
.long __typ_T1 # Argument type descriptors
.long __typ_T,

The reason for the word containing .+4 (i.e., the address of the next word) is to give the function
“object” the same format as ordinary objects, with a type pointer at the beginning. It isn’t really
necessary for the type pointer to be immediately adjacent to the pointer like this, but it is convenient.
If the code of this function is at label .L8 and you have computed its static link in, say, %ecx, then
you might push the function value g on the stack with:

pushl $.L8 # Code address
pushl hecx # Static link
pushl $.L7 # Function ‘‘object’’ address

If you already have a function value—let’s say at 28 (%ebp)—and and want call it, let’s say with
no arguments to keep things simple, you’d generate code like this:

subl $12, %esp # Reserve space for return value

pushl 32 (%ebp) # Push the static link from the function
leal 4 (Yesp), ‘heax # Push address of return value

pushl %eax

movl 36 (%ebp), %heax # Load address of code.

call *heax # Call function

Finally, suppose you have the same function value, but all you know about its static type is that it
has type Any. Before you call, you must check that the function value you are calling is appropriate.
We’re providing a runtime function for this purpose, __checkFunction. To use it, insert the following
code just before loading the code address and calling it in the sequence above:

Pyth Run-Time Structures 9

pushl $0 # Push number of arguments

pushl 28 (%,ebp) # Push the object pointer of the value
call __checkFunction

addl $8, ‘hesp # Pop __checkFunction arguments

5 Native Methods

Native methods are pure C functions. The string value in their import clause is the name of this C
function; the assembler and linker will interpret it correctly as an external name.

6 A Note on Alignments

The MacOS X API differs from what we describe here in one significant way: it requires that the
stack pointer be divisible by 16 at the point of a call. This generally requires adjusting the stack
pointer downward before starting to push arguments on the stack for a call. (It has to be before,
since you can’t expect anything to work if you leave unpredictable amounts of padding before the
arguments to your function.) The reason for this convention is accommodate certain instructions
(the SSE instruction subset) that require aligned operands. If the compiler can count on the stack
having 16-byte alignment, it can place such operands at fixed locations relative to the stack pointer.
I believe that your code will “just work” if you ignore this convention: it’s essentially a performance
issue and we aren’t using any quadword (128-bit) data structures. However, if you are developing on
a Mac and want to be absolutely correct about it, feel free to do the necessary stack adjustments,
since they won’t hurt execution on non-Mac TA32 platforms.

7 The Main Program

The Pyth main program is an ordinary function. Since it will be called from the run-time system,
its label, _pyth main, must be declared to have external linkage (with .globl). It does not need a
function descriptor, since it is not available to a Pyth program as a function value.

The main program contains all code that is not contained in a def, both inside and outside
class definitions. Any variables declared at the outer level are allocated in static storage (the .data
section), so that the main function has no local variables in the usual sense.

The first duty of the main program is to inform the garbage collector of the addresses of all
statically allocated variables, including all exemplar objects (see §2)) using two run-time functions
provided for that purpose (see). Call __registerVar with the address (not the contents!) of each
global variable that might contain an object pointer. Call __registerObj with the address of the
exemplar for each user-defined class. Failure to do this will cause bizarre errors when the garbage
collector frees storage that is still active.

8 Run-Time Support Functions

The Pyth run-time system provides a number of functions that your code can call to perform necessary
functions. They use the normal calling conventions for C functions. You do not push a static link
for them. Unless they return type void (the C type void, that is, which returns nothing, not even

Pyth Run-Time Structures 10

the value None), you do push the address of the place to put the return value, even though it does
not show up explicitly in the C parameter lists. As indicated in the comments, below, some also
vary from the rules given for what the stack must look like before a call (for example, the argument
to __createObject is a single 4-byte pointer, not a 12-byte value). In the descriptions below,
parameters of type PythObject* are (4-byte) pointers to objects; PythType* indicates a pointer to a
type descriptor, and PythValue indicates a 12-byte value. So, for example, to create the Tuple (3,),
you could write:

subl $12, %esp # Allocate space for return value

movl $0, (%esp) # ... and initialize to None

Instructions to push the value 3.

pushl $1 # One-item Tuple

leal 16 (%esp), %eax # Return-value address (popped by __consTuple).
pushl heax

call __consTuple

addl $16, %esp # Pop off arguments, leaving return value.

/** Create a new object consisting of a copy of the object pointed
* to by EXEMPLAR (one of the __obj_... objects created for each
* class definition). */

PythValue __createObject (PythObject* exemplar);

/** Checks that TYPE is a supertype VAL’s dynamic type, causing an error
if not. The contents of VAL on the stack are guaranteed not to be
disturbed, so that if the value you wish to check is on top of the
stack, you can simply push the descriptor pointer, call __cast,

* and pop the descriptor. Use this function for the ’coerce’ operator.
*/
void __cast (PythType* type, PythValue val);
/** Checks that FUNC is the object pointer of a function value with N
* arguments whose types allow the trailing parameter values (denoted
>...7”) . Given a call such as f(E1,E2), where the static type of

f is Any, simply set everything up for a normal call to a function

f (push the arguments, the value that ought to be f’s static link,

and the address in which to return the result), then push FUNC (taken

from the first word of the value f) and N, call this function, and
* then pop FUNC and N from the stack and continue with calling f. */
void __checkFunction (PythObject* func, int n, ...);

* X X X *

/** Cause an error, terminating the program with the given MSG.
* MSG is plain C pointer to a null-terminated string, not a
* PythValue of type String. */

void __pythError (char* msg);

/** Print the N trailing values (all PythValues) on FILE (or the

Pyth Run-Time Structures

* standard output if FILE is None). */
void __print (int n, PythValue file, ...);

/*x Print the N trailing values (all PythValues) on FILE, (or the
* standard output if FILE is None) followed by a newline. */
void __println (int n, PythValue file, ...);

/*x Create a list of the N items (all PythValues) contained in the
* trailing arguments. */

PythValue __consList (int n, ...);

/** Create a tuple of the N items (all PythValues) contained in the
* trailing arguments. */

PythValue __consTuple (int n, ...);

/** Create a Dictionary initialized with the N pairs of PythValues in
* the trailing parameters. For example, if X is the PythValue

* corresponding to the String "Hello", and Y is the PythValue

* corresponding to the Int 42, then __createDict (1, X, Y)

* returns { "Hello" : 42 }. x/
PythValue __consDict (int n, ...);

/** Returns the constant 1 if X is a "true" value, and O
* otherwise. False values are None and all those whose
* truth method returns False.

int __isTrue (PythValue x);

/* Note: Strings do not need a __cons... method, since they may be
* constructed directly in static memory. */

/* The two __registerXXX functions below have no visible effects, but
* must be called to inform the garbage collector of roots that exist
* in statically allocated storage. */

/** Inform the runtime system that space pointed to by VALP is

* a variable in static storage. (This has no visible effect,

* but is needed to allow the garbage collector to find all roots). */
void __registerVar (PythValue* valp);

/** Inform the runtime system that OBJP is a pointer to a
* statically allocated exemplar object. */
void __registerObj (PythObject* objp);

11

	Values
	Objects, Classes, and Type Descriptors
	Built-in Types
	Functions, Methods, and Function Descriptors
	Native Methods
	A Note on Alignments
	The Main Program
	Run-Time Support Functions

