
5/9/2008 1

UnrealScript: A Domain-Specific
Language

Lecture 43
Presented by Aaron Staley

Some slides by Dave Mandelin

5/9/2008 2

Announcements

• Your Project is due tonight at 11:59:59pm
• Review session for the final will be held

Tuesday, May 13 at 8pm in 306 Soda
• The final will be held somewhere at 12:30pm

on Saturday, May 17.
• HKN surveys next Monday in class!

5/9/2008 3

Time Spent on Development

1/6
Code

1/2
Test

1/3
Design

Test
1/2

Code
1/6

Design
1/3

From The Mythical Man-Month by Fred Brooks

 Can we do more error checking and less testing?
 Better yet, can we avoid writing bugs?

5/9/2008 4

Software Maintenance

• Maintenance is
– Fixing bugs
– Enhancing functionality & performance
– Refactoring

• 60/60 Rule
– Project Cost: 60% is maintenance
– Maintenance

• 60% is enhancements, 40% fixes
• 30% is reading code

– From Facts and Fallacies of Software Engineering
by Robert Glass

5/9/2008 5

Lessons from Real Life

• Software needs to be
– Reliable
– Maintainable
– Understandable
– (only if it’s intended to be good :)

5/9/2008 6

Solutions for Real Life

• How can we write reliable, maintainable,
understandable software?

• Design a new language!
– A language specially designed for your problem – a

domain-specific language
• Benefits

– Makes the program short, focused on functionality
– “Junk” implementation details (plumbing) hidden

• And maintainable in one place
– Error checking
– Error avoidance

• Costs
– Time to develop said language

5/9/2008 7

Some books on this

5/9/2008 8

Case Study: UnrealScript

Screenshot from
Operation: Na Pali,
a modification for
Unreal Tournament
(Unreal Engine 1 –
released in 1999)

5/9/2008 9

The Unreal Engine

• The Unreal engine is the game engine which
powered Unreal, and many more since.
– Unreal, Unreal 2, UT, UT 2003, UT 2004, UT2007,

Gears of War, Deus Ex, Deus Ex: Invisible War,
Splinter Cell, Mass Effect, Bioshock, America’s
Army

• It features its own scripting language
UnrealScript
– Allows rapid development of games using the engine
– Allows easy development of modifications

5/9/2008 10

Customizing Games

• Games (especially first person shooters) are
expected to be customizable
– By customers, designers, not just C++ hackers
– Same goes for Office, Mozilla, network clients, …

• Need direct support for game logic
– Independent actors (person, airplane, dog)

• Sounds like a class
• Or it is a thread? And can we have 10k threads?

– Actor behavior depends on state
• Class or methods change over time? Could be hard!

– Events, duration, networking

5/9/2008 11

UnrealScript

• Design Goals
– From http://unreal.epicgames.com/UnrealScript.htm
– Directly support game concepts

• Actors, events, duration, networking
– High level of abstraction

• Objects and interactions, not bits and pixels
– Programming simplicity

• OO, error checking, GC, sandboxing

5/9/2008 12

UnrealScript

• Looks like Java
– Java-like syntax
– Classes, methods, inheritance

• Game-specific features
– States, networking

• Runs in a framework
– Game engine sends events to objects
– Objects call game engine (library) for services

//code snippet
function
TranslatorHistoryList
Add(string newmessage){
 prev=Spawn (class,owner);
 prev.next=self;
 prev.message=newmessage;
 return prev;
}

5/9/2008 13

Compilation

• Unrealscript is compiled to a bytecode that is
executed at runtime
– No JIT though!

function AddSortedItem (string Value,
optional string Value2, optional int
SortWeight)
{
 local UDComboListItem i;

 i = UDComboListItem(Items.CreateItem(
Class'UDComboListItem'));

 i.Value = Value;
 i.Value2 = Value2;
 i.SortWeight = SortWeight;
 i.Validated = True;
 Items.MoveItemSorted(i);
}

5/9/2008 14

Objects Represent World Entities
All inherits from object
All entities in the world inherit from actor
Examples:

Inventory – items carried
HUD – heads-up display
Pawn – “Character” (AI or player controlled)
ScriptedPawn – creature in world

5/9/2008 15

Actor States as part of Language

void spokenTo(Speaker s) {
if (state == ANGRY) {

shootAt(s);
} else {

greet(s);
}

}

void bumpsInto(Object obj) {
backUp();
say(“Raaaaaaargh!!!”);
state = ANGRY;

}

// And what about inheritance?

state angry {
begin:

say(“Raaaaaaargh!!!”);

void spokenTo(Speaker s) {
shootAt(s);

}
}

void bumpsInto(Object obj) {
backUp();
GotoState(‘angry’);

}

void spokenTo(Speaker s) {
greet(s);

}

Without States With States

5/9/2008 16

Networking

• Unreal network architecture
– Server “replicates” object information
– Client simulates world to hide latency and conserve

bandwidth
– Server only sends client what cannot be predicted.

• Once a client knows the starting location and
orientation of a rocket, it can simulate movement

• A client cannot accurately predict movement of
human-controlled players.

• Language Support
– Replication definition block
– Simulated Keyword

• Controls whether an event should be run on a client

5/9/2008 17

Networking
• Replication block:

replication{
reliable if (Role<ROLE_Authority)

Password, bReadyToPlay; //some variables
unreliable if(Role<ROLE_Authority)

ServerMove //client->server movement
reliable if(Role<ROLE_Authority)

Say; //client wants to send a message
reliable if(Role==ROLE_Authority)

ClientChangeTeam; //provide client w/ team info
}

Role indicates who controls object
On server an object is Role_Authority

“Unreliable” means no guarantee of transmission
Can replicate variables and functions

5/9/2008 18

Variable Modifiers

• Want to make configuration very easy
• Can specify that variable is configurable by

map designer with () after var.
– var(Movement) rotator Rotation;

• Can specify that variable’s state should be
saved to a config file.
– var config bool bInvertMouse;

• Defaultproperties block at end of code sets default
values
defaultproperties {

Mesh=LodMesh'Nalit'
 Health=160

5/9/2008 19

Error checking in UnrealScript

• Statically typed language
• Traditional static checking

– Name checking
– Type checking
– Pretty similar to PA2

• Runtime sandboxed as in Java
– In theory, running any UnrealScript package

cannot harm anything outside of Unreal install

5/9/2008 20

Dynamic Error Handling: null

Null pointer dereference
• Unreal Tournament (’99) has 200,000 lines of

script
– Null dereference errors could be triggered by level

designer error
• Don’t want to crash program!
• Log error, return false/0/Null depending on

type

5/9/2008 21

Dynamic Error Handling: ∞

Infinite loops and infinite recursion
• Hard for game engine to recover from

– Important for any plugin architecture
• singular function declaration

– Means “don’t recur into me”
– Declare bugs out of existence

• Engine also will detect infinite loops and
gracefully exit

5/9/2008 22

Performance

• Implementation
– Compiles to VM bytecode (like Java)

• Performance
– 20x slower than C++

• Ugh! Today’s Java is only 2-4x slower.
• But wait…

– Even with 100s of objects CPU spends only 5% time
running UnrealScript

– Graphics/physics engine does most of the work
– UnrealScript doesn’t need to be fast

5/9/2008 23

What occurs where?

World is being
rendered by engine
(C++)

UnrealScript
controls what icons
are drawn where;

Engine renders
icons

Rocket’s physics
are controlled by
C++

UnrealScript timer
spawns smoke

Creature’s
movement
driven by C++
physics

Unrealscript
controls targets,
animations,
attacks,
defenses, etc.

C++ collision detection
invokes Unrealscript event
when projectile hits a wall

Weapon logic
driven by
unrealscript; script
calls C++ library
to render weapon

Most gameplay events (health tracking,
ammo tracking) handled by UnrealScript

5/9/2008 24

Event-driven Language

• No “main”. Engine spawns some objects
initially – eventually yours is spawned
– Your objects can also be placed in world by

level designer.
• Actors receive various events from engine:

– BeginPlay  Actor added to world
– HitWall  Actor hit a wall
– Touch  Actor was touched by a pawn
– Timer  unrealscript sets when timers go off
– Tick  Called every frame
– PostRender  Called after world rendering to

do additional drawing. HUD drawn here

5/9/2008 25

Large Native Library
• Unrealscript can call functions in engine

– native static final operator vector + (vector A,
vector B);

– native final function SetSpeed (float newSpeed);

• Especially needed for AI search, object
drawing, collision tests

• Native side of things rather ugly:
void UDemoInterface::execSetSpeed (FFrame& Stack, RESULT_DECL){

guard (UDemoInterface::execSetSpeed);

P_GET_FLOAT(newSpeed);

P_FINISH;

DemoDriver->Speed = newSpeed;

unguard;

}

IMPLEMENT_FUNCTION (UDemoInterface,-1,execSetSpeed);

5/9/2008 26

Garbage Collection

• Generational Garbage Collector
• Added complication that actors in world

have a destroy() function
– Garbage collector also responsible for setting

pointers to destroyed actors to NULL.

5/9/2008 27

Interpreter

Bytecode Interpreter

Basic Compiler

Simple Optimizing Compiler

Fancy Optimizing Compiler

Implementation Quality

Execution Speed,
D

evelopm
ent Effort

Google Calculator

Project 3 (hopefully!) 

Java 1.5 HotSpot VM (JIT), gcc

Project 3

UnrealScript, Java 1.0

5/9/2008 28

Language Flexibility

Little languages

Domain-specific languages (DSLs)

General-purpose languages (GPL)

Flexibility,
M

aintenance Effort

UnrealScript

Python, C, Java

make

Aside: Many DSLs are at least Turing-Complete
(such as UnrealScript), but often can’t do
important general tasks (like opening files)

5/9/2008 29

Why UnrealScript Worked

• Why was it so successful?
– Many reasons

• From a language point of view
– Domain-specific concepts

• Easy to use
– Based on existing languages

• Easy to learn
– Runs slow

• Easy to implement

5/9/2008 30

General Game Scripting

• Why make your own language? It does take a
lot of time.

• Typical solution these days: GPL + library
+ engine
– A high level language, like Python, can be used as a

scripting language with the engine implemented at
lower level (C++)

– Unfortunately, this loses the special benefits of
an application-specific language

– Let’s see if we can get them back

5/9/2008 31

UnrealPython

• Alternative scripting architecture:
– Source Language: UnrealPython

• Python + our extra stuff
– Target Language: Python

• Goals
– singular keyword
– Survive null pointer errors really well

5/9/2008 32

singular for UnrealPython

• Let’s add the new keyword:

@singular
def onGainedCash(self, amount):

self.celebrate()
self.gamble() # Danger: can gain more cash!
self.invest() # Maybe here too
self.buyMoreStuff()

5/9/2008 33

No.

Implementing singular

@singular
def onGainedCash(self, amount):

if hasattr(self.onGainedCash, ‘onStack’) \
 and self.onGainedCash.onStack = True:

return
self.onGainedCash.onStack = True

self.celebrate()
self.gamble()

 self.invest()
self.buyMoreStuff()
self.onGainedCash.onStack = False

Done? What if gamble() raises an
exception?

5/9/2008 34

Implementing singular: correct

@singular
def onGainedCash(self, amount):

if hasattr(self.onGainedCash, ‘onStack’) \
and self.onGainedCash.onStack = True:

return
self.onGainedCash.onStack = True
try:

self.celebrate()
self.gamble()

 self.invest()
self.buyMoreStuff()

finally:
self.onGainedCash.onStack = False

5/9/2008 35

Key benefits of language customization

• Saves repetition and typos (onGainedCash)
– Only need to figure out hard stuff once

(exceptions)

5/9/2008 36

singular with decorators

Return a singular version of ‘func’.
def singular(func):

def singularVersionOfFunc(*args, **kw):
if hasattr(func, ‘onStack’) and func.onStack = True:

raise SingularException()
func.onStack = True
try:

return func(*args, **kw)
finally:

func.onStack = False
return singularVersionOfFunc

Now Python’s decorator mechanism lets us can write
@singular
def onGainedCash(self, amount):

…

5/9/2008 37

Why use decorators?

• Adding a keyword is now easy!
– At least if we can implement the keyword by

‘wrapping’ a function

• Other languages have related features
– Java: AspectJ
– .NET: Dynamic Code

5/9/2008 38

Null pointer error protection

• UnrealScript catches null pointer errors
def doStuff(self, stuff, args):

startStuff()
self.progressBar.showPercent(20) # c/b None
doSomeStuff()
self.progressBar.showPercent(40) # c/b None

• A missing progress bar shouldn’t stop us!

5/9/2008 39

Squashing null pointer errors

• Step 1: What transformation do we want?
– Source code

self.progressBar.showPercent(20)

– Target code
• Detect & silently catch null pointer errors

try:
self.progressBar.showPercent(20)

except AttributeError, e:
if str(e) != “’NoneType’ object “ +

“has no attribute ‘progressBar’”:
raise

5/9/2008 40

Squashing null pointer errors (2)

• Step 2: How do we do implement the transformation?
• Doesn’t wrap: can’t use decorators

– Parse code to AST
– Find attribute accesses
– Replace with null-safe version

• Python will help us
– Recall: existing language ⇒ lots of stuff done for us
– See modules parser, compiler, dis(assembler)

5/9/2008 41

Creating Your Own Language

• CS 164
– Projects 1-3
– You have more than enough skills!

• Hard part is language design
– Requires experience
– So create some languages!

5/9/2008 42

Getting Started

• Language Design
– Factor out differences from stereotypical code
– Base on existing languages
– Extensibility is good

• Implementation
– Look for parsers and modification features (e.g. decorators)
– Interpreters are easy to write
– Compilers can make it faster

• Even compile to High-level language: C, bytecode

• Libraries and Runtimes
– An easy way to make common operations fast
– Good libraries make a language popular

• Java, .NET, Perl, Python

