
CS 164, Spring 2008 CS 164: Homework #5 P. N. Hilfinger

Due: Friday, 20 March 2009

See the files in Unless the problem specifies otherwise, please put your solutions in a file
named hw5.txt in your hw5 subdirectory.

1. The Algol 68 language introduced an expression called the case conformity clause. Here’s
one version of it:

case I = E0 in T1: E1; T2: E2; ...; Tn: En; esac

where the Ei are expressions (i.e., with values), I is an identifier, and the Ti are types. The
idea here is that the program first evaluates E0, and assigns I its value. If the dynamic type
of I is Ti for some i (or a subtype of Ti), the program evaluates Ei and yields its value as
the value of the entire clause. If more than one Ti fits, the program chooses one arbitrarily
and evaluates it (the expression must type properly regardless of which choice is made). The
problem is come up with a typing rule for this expression. Assume that the AST for the case
conformity clause above is represented in Prolog notation as

case_conform(Î, Ê0,[case(T̂1, Ê1),...,case(T̂n, Ên)])

where x̂ is the AST for x. So the problem is to find an appropriate replacement for ‘??’ in

typeof(case_conform(I,E0,Clauses), T0, Env) :- ??

The implication here is that all the clauses have to produce values of some common type,
T0. There is no need to know the rest of this language to do this. See the skeleton in
hw5/case_conform.pl.

2. In Java, the following is legal:

String[] Y;

Object[] X;

...

X = Y;

That is, an array of T1 may be assigned to a variable of type array-of-T2 as long as T1 is a
subtype of T2. As it turns out, this rule is unsound in the sense that because of it, certain
type errors can only be discovered at execution time, requiring a (somewhat) expensive check
that slows down some operations. Give an example of how this can happen (by which I mean
an actual Java program).

3. Write a legal Python program that simply prints “static” and that would also be legal
if Python used dynamic scoping, but would print “dynamic” instead.

1

Homework #5 2

4. Show how the type rules from slide 11 of Lecture 13 work to determine the types of Y,
g, and fact in

def Y f = f (Y f)

def g h x = if x = 0 then 1 else h(x-1) * x fi

def fact x = Y g x

Assume that ‘-’ and ‘*’ obey the same rules as ‘+’. (Aside: for obvious reasons, Y, the
“paradoxical combinator,” won’t actually work unless this language uses normal-order evalu-
ation, in which expressions are not evaluated until their value is actually used in a primitive
operation. However, evaluation is not the point here.)

5. The unification algorithm from class does not handle cases such as unifying α → β

against α → α → β. To do so would require unifying β against a term that contains itself,
so that β would have to have a non-tree-like structure like this:

→

α

Still, this kind of type does occur and can be useful. A revised algorithm handles it. In
this algorithm, we extend binding(P) function so that it applies to all terms, not just type
variables. Initially, all terms (variables or not) are bound to themselves. The abstract match
function becomes:

match(P, A) {

while (P != binding(P))

P = binding(P);

while (A != binding(A))

A = binding(A);

if (P == A) /* Pointer equality here */

return true;

if (P is a type variable)

binding(P) = A;

return true;

}

if (A is type variable)

binding(A) = P;

return true;

}

binding(P) = A;

if (oper(P) != oper(A)

|| length(children(P)) != length(children(A)))

return false;

for each child cp in children(P)

Homework #5 3

and corresponding child ca in children(A)

if (! match (cp, ca))

return false;

return true;

}

If match(P,A) succeeds, and we replace all nodes in either P or A with their bindings (following
them recursively until we get to unbound terms, as in the program above), we’ll get the
same structure. Unlike the algorithm in lecture, however, this structure might be a general
(even circular) graph. Fill in the skeleton unify.py in the hw5 directory to implement this
algorithm, and perform (at least) the simple test indicated. (There isn’t much to this problem
really, aside from a lot of useful reading and understanding of Python code.)

