
CS 164, Spring 2009 CS 164: Homework #6 P. N. Hilfinger

Due: Friday, 1 May 2008

1. I produced the following program using gcc -S foo.c (with an older version of gcc):

.globl f

.type f, @function

f:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl $0, -4(%ebp)

movl $0, -8(%ebp)

jmp .L2

.L3:

movl -8(%ebp), %eax

sall $2, %eax

addl 8(%ebp), %eax

movl (%eax), %eax

addl %eax, -4(%ebp)

incl -8(%ebp)

.L2:

movl -8(%ebp), %eax

cmpl 12(%ebp), %eax

jl .L3

movl -4(%ebp), %eax

leave

ret

Produce a plausible definition (in C) of function f, one that might have produced this
output. The function does return a value.

2. In lecture, we talked about array descriptors, which are data structures containing
all the information one needs to access (get the address of) an array element A[i,j] in an
implementation that allocates all elements of a new array contiguously. In C, multidimen-
sional arrays are composed of rows of rows, so that A[i,j] (or A[i][j] in C) is located
at address(A0,0) + M · S · i + S · j, where the array in A is M × N and each element has
size S. Thus, the three constants data address(A0,0) (the virtual origin), M · S (the row
stride), and S (the column stride) can be precomputed into an array descriptor, which the
program can use to generate array accesses and can pass as a parameter to functions that
expect to receive the array as a by-reference parameter. Show the IL code that you’d use
to access array element A[i][j], assuming that the d, ti, and tj are IL registers containing
the address of the array descriptor for A, the value of i, and the value of j.

1

Homework #6 2

3. These exercises involve operations on array descriptors to give different view of an
array. Just describe the calculations; we don’t need actual IL code.

a. Suppose that a certain array descriptor contains the information (VO, S1, S2) for
accessing two-dimensional array B. Show how to create a new array descriptor that
accesses column number j of B. This will be a one-dimensional array descriptor (hav-
ing only one stride).

b. Show how to create a new array descriptor that accesses the transpose of B.

c. Show how to create a new array descriptor (for array view B’) that accesses the rows
and columns of B in reverse, so that B’[0,0] is the same as the last column of the
last row of B.

