1 Finite Automata and Regular Expressions (20 points)

S(D(l“/j é ¢) Draw a deterministic finite automaton(DFA) for the language of all strings over the alphabet{0,1} that do
()7]_ _not contain the substring 110.

¢
3 909 0, |

(b) Consider the following DFA over the alphabet ¥ = {a, b}.

a

D =

e

1. Label the transitions of the following NFA so that it accepts the same language as
the DFA. Your NFA should transform to the given DFA by applying the NFA-to-DFA
conversion algorithm given in lecture.

T

¢ b 2 O- |
¢ ABD {0 —(E> (G &

i1. Write the regular expression for this language. Among the several possible answers, write
the one that would transiorm to this NFA by applying the regular expression-to-NFA
conversion algorithm given in lecture.

(ba)* | @

Ef}ff’wﬂ\ O%

4. |8 points] Consider the parse tree below. All terminal symbols are written at the
same level on the bottom row.

(1) i ® ¥ (

1)

a. Show as much of the grammar as one can deduce from this parse tree.

e ¢ L=+ f f=> () e P
t {‘[:*EF 1 (F |
‘ e

e =
|

More questions on the next page

——

Login:

b. Show a reverse rightmost derivation corresponding to this tree, as performed
by a shift-reduce parser. (However, you need not mention the shifts and
reductions, just the sentential forms that get you back to the start symbol from

the input).

(L’)[/_*-Lf‘ﬁﬁ(b) > ¢ (i)
=2 (L) L p o L % (L) @E(Li)
D () £ # ¢ & () = e (£)
D (L) 4 & Lon (0) > e (2)
= () t % ¢ P%x .) > ¢ Le)
S5 () tx £ ox (i) > et
a (i) t « (i) 2 -i?
> (1) e #+ (i) 2 et
= £ x (i) = e
2 £ p (L)
2t ()

c. Show that the grammar 1s ambiguous by giving a string that has (at least) two

parses and giving two distinct parse trees for it.

e e
| |
L
/N |
¢ p -
/N _
f "

Continued on next page.

Login: 6

d. Given one of the parse trees for an ambiguous string in this language, can you
find two leftmost derivations that give rise to that parse tree? If so, show such
a tree and show the derivations; otherwise say why you cannot.

NO, EQ&_C\(\ ?0«'{5.@ ‘{'F?_.e Colye {;{}u r"-.{;lfl _f_ﬂ
@;me)f\a GNL (ap‘tmrs}&# CD‘E‘NU&![on

Login:

D =

d.

épﬂ"lﬁi}) C)g

. [8 points] Suppose that string literals consist of one or more “stringlets”

separated from each other by whitespace (one or more characters, each
one of which is either a blank or a newline). Each stringlet consists of any
sequence of characters (including newlines) between quotes (*), but with
any occurrence of a quotation mark inside the string doubled. For example,
“* and “”” are valid stringlets — the first denoting the empty string and the
second denoting one quotation mark. Thus the following are valid string

literals:

“Hello, “ “world.”
HI Said! II'.HHiHJ!!!
“These are

two lines”
*These are

i

f-l.twloﬂ £l ilIineSH

Give a regular expression for these literals, using Lex notation (including
definitions, if you want).

——_

STEINGLET \ (/7 "'-TH:/ \ \"/a‘;k \

JSTRINGLE T4 (T \n)+ 4 STRINELE T)k

SO T |
\

Produce the simplest DFA (yes, it must be deterministic) you can for these
literals.

Fall oY

2. First/Follow/LL(1)

This question concerns the context-free grammar given below (where capital letters denote non-
terminals, small letters denote terminals).

EFE—7ZXblZa
X—dZl| e
Z—aXXlX

Part a).

Fill in the following table with First and Follow sets for the grammar.

o FIRST (@) FOLLOW ()
E ac , Bjﬁi $
A JL) %, f.'?-'u,]f?) 0\
z o, &, ¢ &, b, d
ZXb o b, A
Za o, d
dZ GQ
aX X O
X A, §
i 2
Part b).

In the LL(1) parsing table below, fill in the row corresponding to the non-terminal A:

a b d $
Z | 23aXX 2 7> X
L 2 X

Part c).

Is the grammar LL(1)7 Justify your answer.

U{:‘ | i’kﬁ.u ”.E\L V[0 Gl-‘h{’\ v a'is ace T4 @T'}fg {'U'F a”

Part d).
Suppose that in the above grammar, you replace € with ¢, so the grammar becomes
E—ZXblZa
X—>dZ|c
Z—aXX|X
Now, you are parsing the string accd e¢b with a non-deterministic LR parser. For each of the
following stack/input configurations, state whether or not they can lead to a successtul parse
(YES/NO will suffice).
accldeb N 0
aXX|ldch Yes
aX XdZIb I\JD
aXXXIb N2

ZXI|b Yes

