More Arithmetic Operations

In this chapter, we are going to investigate further into how arithmetic operations are
handled in assembly language. As usual, we will use gcc as our tutor.

Multiplication

Let’s try a small example to see what code is generated for multiplication operations:

unsigned mult (unsigned a) {
return a * 8;

}

The generated assembly language for this function is:

_mult:
mov eax, DWORD PTR [esp+4]
sal eax, 3
ret

Well that does not look exactly like a multiply instruction. What has happened here is that
we chose a rather special multiplier. 8 is a power of 2, and the compiler has noticed this and
replaced the multiply operation by a shift instruction. The sal instruction shifts bits left in a
register. Zero bits enter at the right hand end, and the bits at the left hand end simply get
discarded. Shifting left is equivalent to multiplying by powers of 2 (for an analogy consider
that to multiply by 1000 in decimal, you just add three zeroes at the end.

Certainly it is nice to learn the shift instruction, but we were interested in learning how to
multiply. Let’s try a number that is definitely not a power of 2:

unsigned mult (unsigned a) {
return a * 135;

}

The generated assembly language for this new version is:

_mult:

mov edx, DWORD PTR [esp+4]
mov eax, edx

sal eax, 3

add eax, edx

mov edx, eax

sal edx, 4

sub edx, eax

mov eax, edx

ret



Still no multiply instruction—what the heck is going on? Instead of a multiply we have a
complicated series of shift, add and subtract instructions. The answer is that the compiler
has noticed that 135 = 128+8-1, and it is computing a*135 by using the formula:

a*128 = (a*8 + a)*1le - (a*8 + a)

That sounds horribly inefficient until you remember that multiplying by a power of 2 is
cheap since we can use a shift. Trace out the instructions in the above code and you will see
that it does indeed succeed in multiplying the argument by 135. Here are comments for the
code that make this clear:

mov eax, edx # copy value of a
sal eax, 3 # a * 8

add eax, edx #a*9

mov edx, eax # copy a * 9

sal edx, 4 # a * 144

sub edx, eax # a * 135

Well OK, this gets the right result, but what’s going on here? Is there no multiply
instruction on this machine. Let’s try once more, forcing the compiler to handle a case
where it does not know the value of the multiplier:

unsigned mult (unsigned a, unsigned b) ({
return a * b;

}

It is hard to see how gcc can play games with this one, and indeed when we compile this
with gcc, we get:

_mult:
mov eax, DWORD PTR [esp+4]
imul eax, DWORD PTR [esp+8]
ret

Finally—a multiply instruction. The imul instruction multiplies its two operands and places
the product in the target register. So now we have an interesting question. If there is indeed
the convenient imul instruction available, how come gcc did not use it for multiplying by
135 and generate a much simpler program in that case:

_mult:
mov eax, DWORD PTR [esp+4]
imul eax, 135
ret

The interesting answer is that the above is a perfectly valid use of the imul instruction, and
would have worked just fine. So how come gcc generated the long sequence of shifts and
adds. The answer is that, surprisingly enough, the sequence of shifts and adds is faster. If
you think about the way long multiplication works, it’s a rather tedious process that goes



digit by digit. It’s not such a surprise to find that the imul instruction is rather slow and
takes many clocks. The gcec compiler has lots of knowledge about speed trade offs like this,
and it tries to generate the most efficient code, even if it is not the most obvious code. This
is yet another reason to leave generation of assembly language to compilers! For interest
let’s try a really big constant multiplier:

unsigned mult (unsigned a) {
return a * 1277359;

}

Now we get:

_mult:
mov ecx, DWORD PTR [esp+4]
mov edx, ecx
sal edx, 2
add edx, ecx
mov eax, edx
sal eax, 4
sub eax, edx
mov edx, eax
sal edx, 5
add eax, edx
add eax, eax
add eax, ecx
mov edx, eax
sal edx, 7
add eax, edx
add eax, eax
add eax, ecx
ret

Surprisingly, gcce still figures out that this long sequence is faster than animul instruction.
It is actually quite a challenge to figure out exactly why the above sequence works, and if
we were writing code by hand, it is hard to imagine we would take the trouble to do this
transformation. Surely there must be some huge constant where it does not pay to use shifts
and adds. How about:

unsigned mult (unsigned a) {
return a * 1277359401;

}

Surely it cannot be worth generating the even longer sequence required by this mysterious
constant? And sure enough, this time gcc finally gives up trying to be clever and figures
out that an imul instruction is faster in this case:

_mult:
mov eax, DWORD PTR [esp+4]



imul eax, eax, 1277359401
ret

Who would have thought that generating multiply instructions could be that complicated?
Is this effort really worth while? The answer is definitely yes. Most multiplications by
constants in real programs are of small constants, so the gain in figuring out how to avoid
the generation of slow imul instructions is definitely worth it.



