
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger
Spring 2011

Project #2: Static Analyzer (revision 15)

Due: Wednesday, 6 April 2011

The second project picks up where the last left off. Beginning with the AST you produced
in Project #1, you are to perform a number of static checks on its correctness, annotate it
with information about the meanings of identifiers, and perform two rewrites. Your job is
to hand in a program (and its testing harness), including adequate internal documentation
(comments), and a thorough set of test cases, which we will run both against your program
and everybody else’s.

1 Summary

Your program is to perform the following processing:

1. Add a list of indexed declarations, as described in §4.

2. Decorate each id node by adding a declaration index that links it to a declaration in
the list. This is also described in §4.

3. Perform several small rewrites of the AST, described in §5:

(a) Add an extra (decorated) id node as the last child of subscription and slicing

nodes to indicate which function to use to perform the operation.

(b) Rewrite all lambda expressions into explicit functions.

(c) Rewrite allocation expressions to use new AST nodes that were not produced by
the parser.

4. Enforce the restrictions described in §8.

The remaining sections describe these in more detail.

1

Project #2 2

2 Input and Output

You can start either from a parser that we provide, or you can augment your own parser. In
either case, the output from your program will look essentially like that from the first project,
but with some additional annotations. We’ll augment pyunparse to show your annotations.

Python is a very dynamic language; one may insert new fields and methods into classes or
even into individual instances of classes at any time. One may redefine functions, methods,
modules, and classes at will. For this project, we will introduce a few restrictions, but there
will be many places where we can’t definitively say that something is an error.

You will add information to identifiers indicating their type. In Python, the compiler
will, in general, know very little about the types of things, so that the best we can usually
say is that “variable α has static type any,” where any denotes the supertype of all types.
Sometimes, however, as in the case of functions, you will be able to at least check parameter
counts.

3 New AST Node Types

We introduce the following node type for denoting allocation, which the parser could not
generate since it lacked the necessary semantic information:

(new N T (id N init) (expr list N E1 E2 ...))

is the translation of

(call N T (expr list E1 E2 ...))

when T turns out to be a type (it will generally be an id node). The extra id node for init

is to be decorated with the declaration for the relevant init procedure for that type (there
should always be one). (In Python, when A denotes a type, the construct A(arguments) means
“allocate a new object of type A (call it x), then call x. init (arguments), and then yield
the value x as the value of the expression.”)

In addition, the semantics deals with two new function types. They never appear in the
output from your program, but for internal purposes, you are likely to want to have AST
nodes to represent them. See §6.1. First,

(bound function type N return-type arg-type1 ...arg=typen)

represents the type of x.f when x denotes an object and f denotes a method of its class.
Similarly,

(bound function type star N return-type arg-type1 ...arg=typen)

is the same, but for methods with a trailing * argument.

Project #2 3

4 Output Format

The output ASTs differ from input ASTs in these respects:

• Identifier nodes will have an extra annotation at the end:

(id N name D)

where D ≥ 1 is an integer declaration index.

• Compilations will now have the syntax

Compilation : ’(’ "module" N Stmt* ’)’ Decl*

The Decls, described in Table 1, represent declarations. They are indexed by the
declaration indices used in id nodes, and appear in order according to their index.

• Nodes representing subscripting and slicing get an extra id node at the end to provide a
place for the semantic analyzer to indicate what function should perform the operation.
See §5.

There is one declaration index (and corresponding declaration node) for each distinct
declaration in the program: each module, class definition, local variable, parameter, method
definition, and instance variable. Table 1 shows the formats of the declaration nodes.

The set of declarations is not the same as a symbol table (or environment). It is an
undifferentiated set of all declarations without regard to scopes, declarative regions, etc.
You’ll need some entirely separate data structure (which you’ll never output) to keep track of
the mappings of identifiers to declarations at various points in the program. Some declarations
don’t correspond to anything you can point to or name in the program. For example, under
our rules, the module names __main__ and __builtin__ are not defined within your program,
and references to them are errors, even though those modules certainly exist and contain lots
of definitions you can reference.

Project #2 4

Table 1: Declaration nodes. The list of the declaration nodes for a program in order by index follows the

AST. In each case, N is the declaration index, unique to each declaration node instance.

Node Meaning

(localdecl N I P T) Local variable named I. P is the declaration index of the enclosing
function. T defines its static type (see §6, below).

(globaldecl N I P T) A global variable named I, defined outside any function. P is the
declaration index of the module containing it. T is its static type.

(paramdecl N I P K T) Parameter named I of type T defined as the Kth parameter (number-
ing from 0) of the function whose declaration index is P .

(constdecl N I P T) Constant value named I of type T defined in a module (actually, this is
always the __builtin__module) whose declaration index is P . This is
for unassignable values such as None, and is only used in the standard
prelude. All definitions of “variables” in the standard prelude should
produce constdecl nodes (and only those declarations).

(instancedecl N I P T) Instance variable named I of type T defined in the class with declara-
tion index P .

(funcdecl N I P T) An ordinary function (as opposed to an instance method) named I of
type T , defined in a function or module with declaration index P .

(methoddecl N I P T) An instance method. The arguments are the same as for funcdecl,
except that P refers to the enclosing class.

(classdecl N I M P

(index list m1 · · ·mn))

Class declaration for class named I. M is the declaration index of
the containing module. P is the declaration index of the parent type.
Only the builtin class any has P = 0 (see §9) (for purely syntactic
reasons, however, In the standard prelude it is written to take itself as
its parent.) The mi are the declaration numbers of the class members
that are introduced or overridden in the class (not the ones that are
just inherited, but not overridden). They should be listed in order of
appearance in the source text of the class.

(moduledecl N I

(index list m1 · · ·mn))

Module declaration. The main module of a program has the name
main . However, that name is not visible in the program, nor can

it be imported. The builtin definitions of the standard prelude are
contained in a module with the name builtin (also not explicitly
visible or importable). The import statement introduces other mod-
ules. The second and subsequent imports of the same module do not
create new module declarations. The index list gives the indices of
declarations in the module, in the order they appear in the source.

Project #2 5

5 Rewriting

For the sake of the code generator (and to some extent, to simplify parts of semantic analysis),
your program must perform several rewritings.

Lambda expressions. In the output tree, replace all lambda expressions with explicit
functions. For example, an input program that looks like this:

def f (x, L):

return map (lambda y: y+x, L)

would produce the same kind of tree that would be generated by

def f (x, L):

def __lambda1__ (y):

return y+x

return map (__lambda1__, L)

Place the defs for all lambda expressions in a function (or the main module) at the beginning
of the body of that function (or the main module). For simplicity, we’ll just assume that
names of the form lambdaN are not allowed in source programs.

Allocators. Whenever you encounter a “call” node whose first operand denotes a class
(which is Python’s way of writing the Java or C++ new operator):

(call N T (expr list E1 E2 ...)),

convert it to the expression

(new N T (id N init) (expr list N E1 E2 ...)).

With an appropriate declaration index on the id node.

Attributes of classes. Whenever you encounter a node of the form

(attributeref N E1 I),

where E1 denotes a known type or module that defines I (an id node), replace it with I, after
assigning the appropriate declaration index to I. Thus, after the Python class declaration

class A(object):

x = 13

def f (self): ...

The statement

a, g = A.x, A.f

becomes, in effect,

a, g = x, f

but with x and f decorated with the appropriate declarations of instance variable x and
method f. It is an error for E1 to denote a type or module that is not known to define I.

Project #2 6

Slices and Subscripting In our Python dialect, slicing and subscripting are actually func-
tion calls. The effect of

print x[3], s[1:7]

is identical to that of

print x.__getitem__(3), s.__getslice__(1, 7)

The statements

x[3] = y

s[1:7] = q

are equivalent to

x.__setitem__(3, y)

s.__setslice__(1, 7, q)

To help out the code generator, add an extra id node to the ends of subscription, and
slicing AST nodes, decorated with the appropriate declarations, as in:

(subscription N (id N x) (int N 3) (id N __getitem__))

(slicing N (id N s) (int N 1) (int N 7) (id N __getslice__))

(subscription N (id N x) (int N 3) (id N __setitem__))

(slicing N (id N s) (int N 1) (int N 7) (id N __setslice__))

where the trailing id nodes are decorated with the appropriate methoddecl indices (and, as
usual, the other id nodes are eventually decorated with indices as well).

6 Types

For this project, the possible types are either classes, function types, or bound-method types.

6.1 Type representation

Class and function types are represented as in project #1:

(type N (id N type-name))

(function type N return-type arg-type1 ...arg=typen)

(function type star N return-type arg-type1 ...arg=typen)

and in addition, we introduce two new function types:

(bound function type N return-type arg-type1 ...arg=typen)

(bound function type star N return-type arg-type1 ...arg=typen)

Project #2 7

(All id nodes here and below should also have appropriate declaration indices attached.) If
we have the Python statements:

class A(B):

def f(self): ...

def g(self,*x): ...

x::A = A()

then the expressions A.f and A.g have, respectively, the types

(function_type 0 (type 0 (id 0 any)) (type 0 (id 0 A)))

(function_type_star 0 (type 0 (id 0 any)) (type 0 (id 0 A)))

and the expressions x.f and x.g have, respectively, the types

(bound_function_type 0 (type 0 (id 0 any)))

(bound_function_type_star 0 (type 0 (id 0 any)))

(the line-number attributes here are irrelevant). There are restrictions on what you can do
with values of the bound types (see §8).

With a couple of exceptions, unless defined otherwise with an explicit type assignment
(via ‘::’), any variable or parameter has static type any. Likewise, any is the default return
type of a method or function. This type, defined in the standard prelude, is an extension to
Python. It’s not a real type, in that no object of that type can be created (attempting to call
any(E) will always cause a run-time error). There are two exceptions to this default rule:

• The first parameter of any method has the type of the enclosing class.

• A ‘*’ parameter (such as extra in

def open(name, *extra):

etc.

always has type list (AST: (type 0 (id 0 list))) (where the id is decorated with
the declaration index for the builtin class list).

Besides any, the standard prelude provides several classes that represent built-in types:

bool int str list tuple dict type object file NoneType module xrange

These types do not inherit from object, as user-defined types must. In the text of the
standard prelude, the special type any inherits from itself (a kludgy special case.) All integer
literals have type int, string literals have type string, list displays ([...]) have type
list, tuples have type tuple, and dictionary displays ({. . . }) have type dict. The standard
prelude also defines the two constants True and False of type bool (in Python 2.5, these
aren’t constants, but it’s convenient for us to make them constant anyway), and the constant
None, of type NoneType. If A is a type (the name of a class), then it has type “type”. We’ve
also introduced the type module (not in Python), which is the type of all modules.

Project #2 8

6.2 Subtyping Rules

The subtyping rules in our dialect of Python are more than a little odd because of the status
of the type any. In fact, any decent type theorist would probably murder me in my sleep
were they to become public, so be aware that things will be a bit different after you leave this
course.

• All non-function types are subtypes of any.

• NoneType (the type of None) is a subtype of all types except int and bool.

• A class type is a subtype of its parent type (if any).

• Function types and function-star types (i.e., those represented by function type and
function type star) are subtypes of any. Bound-function types are not (this is a
kludge to explain a restriction on the use of bound functions (see §8.)

• Apart from any, a function type is not a subtype of any non-function types.

• A function type represented by

(V N R T1 · · ·Tn),

where V is function type, function type star, etc. and R and Ti are types, is a
subtype of

(V N ′ R′ T ′
1
· · · T ′

n
),

if

– R is a subtype of R′.

– For each i, either T ′
i

is any or T ′
i

is a subtype of Ti
∗.

Any other combination of function types is erroneous. So,

class A(B):

pass

def f(x): ...

def f0(x)::A: ...

def f1(x::A)::A: ...

def f2(x::A)::B: ...

def f3(x::B)::A: ...

def f4(x::B)::B: ...

∗This is the part that could get me killed. There is not usually supposed to be an exception for any here.

Project #2 9

In the following, x1 must have a supertype of the right side’s type

x1::(A)->B = f # WRONG (return-type mismatch)

x1 = f0 # OK

x1 = f1 # OK

x1 = f2 # OK

x1 = f3 # OK

x1 = f4 # OK

x2::(B)->A = f0 # OK

x2 = f1 # WRONG (argument-type mismatch)

x2 = f2 # WRONG (argument and return-type mismatch)

x2 = f3 # OK

x2 = f4 # WRONG (return-type mismatch)

As usual, the “is a subtype (supertype) of” relation is reflexive and transitive.

Project #2 10

Table 2: Method names for operators.

Unary operators
Operator Method

+ __pos__

- __neg__

~ __invert__

not __not__

Binary operators
Operator Method

+ __add__

- __sub__

* __mul__

/ __div__

// __div__

% __mod__

** __pow__

<< __lshift__

>> __rshift__

& __and__

^ __xor__

| __or__

Container operators
Operator Method

a[x] __getitem__, __setitem__

s[i:j] __getslice__, __setslice__

Comparisons
Operator Method

< __lt__

> __gt__

<= __le__

>= __ge__

== __eq__

!= __ne__

in __contains__

notin __notcontains__

is __is__

is not __isnot__

Augmented Assignment
Operator Method

+= __iadd__

-= __isub__

*= __imul__

/= __idiv__

//= __idiv__

%= __imod__

**= __ipow__

<<= __ilshift__

>>= __irshift__

&= __iand__

^= __ixor__

|= __ior__

Notes.

a. x in y has the same effect as y.__contains__(x) (the arguments are reversed, in other
words). Likewise, x not in y corresponds to y.__notcontains__(x).

b. The __notcontains__, __is__, and __isnot__ are not standard Python.

c. The __set...__ methods are for targets (left sides of assignments) and the __get...__
methods are for other contexts.

Project #2 11

7 Special Methods for Operators

Several AST node types contain identifiers for operators: specifically, unop, binop, comparison,
and aug assign. All of these correspond to special operator names that are defined in the
pseudo-class any. Thus, an expression such as x+y is treated exactly as if it were the method
call x.__add__(y). Accordingly, you should decorate the identifier node for + with the dec-
laration index for __add__. Table 2 gives the equivalent method names for all the operators.
As a result of this approach, there is nothing special you have to do to check the validity
of operator expressions—the problem is essentially reduced to that of checking that calls are
valid.

The standard prelude defines these methods in type any, so that (as in normal Python),
you are free to write things like

x = y = 3

print x+y

and have it work. The default definitions of the operators are native methods that cause
run-time errors.

8 Various Restrictions

Our Python dialect is going to place certain restrictions on programs that are not official
Python, but that make it possible to perform a few simple checks.

1. All methods (defined by defs that occur immediately within a class definition) are
instance methods (there are no static methods), and all therefore have at least one
parameter. The first parameter of a method has the enclosing class as its static type.
(The first parameter of a Python method corresponds to this in a Java program.)

2. An identifier that is defined as a class, function, method, constant, or module may not
be assigned to in the same declarative region.

3. All variables defined to be local to module __builtin__ are constants.

4. Except in the standard prelude, an inheritance clause in a class must reference a class
completely defined previously in the program, and that class must be a subtype of the
predefined class object. In the standard prelude, the inheritance clause for the type
any is any.

5. In a call, the expression for the called function must have a function type (and in
particular, not type any) that is type-compatible with the arguments to the call. A
function type is type-compatible with a list of arguments iff

– The number of arguments is the same as the number in the function type, or
greater than or equal to that number for a ... star type.

Project #2 12

– For each of the formal parameter types in the function type, the corresponding
argument has a (static) subtype that is assignment compatible to the formal type.
We say that a type T is assignment compatible to T ′ if T is a subtype of T ′ or
T is type any†. It is a consequence of the subtyping rules that bound function
values are not assignment-compatible to anything, and so cannot be assigned to
any variable, passed as parameters, or even used in tuples or lists.

6. Names of classes, methods, and functions may not be redefined immediately within the
same declarative region (function, class, or module). If a variable is assigned to in some
declarative region (thus becoming a local variable or instance variable), its name may
not then be defined by def or class statements immediately within that same region
(and vice-versa).

7. The only attributes of a class (things referenceable with ‘.’) defined by a class decla-
ration in the program are instance variables explicitly assigned to in the body of the
class (outside of any methods), or methods defined by def immediately within the class
body, or inherited attributes. Thus, the only attributes of class C:

class C(A):

a = 3

def f(self): ...

are a, f, and anything inherited from A (other than a or f). That means that the
following are illegal in our subset:

class A(object):

a = 3

def f(self, x):

self.b = 10 # ERROR: no b in class A instances

x.b = 10 # ERROR: static type of x is any, not A

A().b = 2 # ERROR: no b in class A instances

A.b = 3 # ERROR: No b in class A itself

x = A()

x.b = 2 # ERROR: static type of x (any) has no b.

Your compiler must catch these errors.

8. If a class inherits a method, then it may override (redefine) that method only with
another having a compatible signature. That is, a method M ′ may override a method
M only if M ′’s type, minus the first parameter, is a subtype of M ’s type, minus the
first parameter. It may not redefine an inherited method by assignment (i.e., as an
instance variable). It may not define an inherited instance variable in any way (either
by assignment or def).

†Because of this rule, an argument may have a dynamic type at execution time that is incompatible with
T

′. Therefore our system (in Project #3) will have to check and cause an exception if that is the case. Such
is the price of dynamic typing.

Project #2 13

9. The static type of the first parameter of a method is the enclosing class.

10. The scope of declarations other than classes includes the entire declarative region that
contains them (before and after the declaration, in other words). In the case of classes,
this declarative region does not include the bodies of methods within those classes. This
is the same as for regular Python except at the outer level.

11. It is illegal to introduce a variable, parameter, function, method, class, or module named
None.

12. All identifiers that are used must be defined.

13. The right-hand side expressions of an assignment must have types that are assignment
compatible to those of the target (left side). Properly speaking, in an assignment such
as

x, y = 1, 2

the right-hand side value is a tuple, whose elements have type any, so this kind of
assignment will always work.

14. The expressions in a list display ([...]), tuple, or dictionary display ({. . . }) must all
be subtypes of any.

15. The expression in a return statement must be assignment compatible to the return
type of the enclosing function. A return statement without a value is equivalent to
‘return None’. A return statement with a list of values (or a single value followed by
comma) returns a tuple.

16. The file argument to a print statement, if present, must be assignment-compatible to
the standard-prelude type file.

17. If a variable (local variable, parameter, or instance variable) is ascribed a type using
the ‘::’ notation, it may not be ascribed a different type within its scope.

It follows from these rules that the indicated statements in the following Python code are
all errors that the compiler must catch:

class A(object):

z::int = 3

def f(self, x)::int:

return x

def f(c::A, y::int): return y

x = f

print x(A(), 3) # ERROR: x has type any, not a function type.

x = A()

Project #2 14

print x.z # ERROR: x has type any, not a class type

g::(A,int)->any = f

print g(A(),3) # OK.

g = A.f # OK (A.f has a subtype of g’s type).

y::A = A()

print y.z # OK (y’s static type A).

x = y.f # ERROR: y.f has bound function type, not a

subtype of any.

9 Predefined Names and the Standard Prelude

Python has a large set of predefined classes, functions, and variables, collectively referred to
as “the standard library,” or in other languages as “the standard prelude.” These live in
a module called __builtin__. Unlike other modules, all of its definitions are visible in the
module __main__ (the one containing your program), as if you had a statement

from __builtin__ import *

at the top of your program (that is, if this were legal in our subset). Its definitions are visible
in any module, unless hidden by a definition in that module

We will supply a file, __builtin__.py, containing our standard prelude (but a very small
subset of what’s provided in real Python, of course). You just parse and process it as for
other modules, with the exception that certain restrictions don’t apply to it. For your own
testing purposes, you’ll be able to use cut-down versions of __builtin__. The definitions from
__builtin__—at least those used in your program—should be included at the beginning of
the declaration list in your output. All of the names there, with the exception of __builtin__
itself, should be visible in your program.

You’ll see prolific use of native methods in the standard prelude, which should come as
no surprise.

10 Running the program

For this project, the command line looks like one of these (square brackets indicate optional
arguments):

./apyc --phase=2 -o OUTFILE [--library=DIR] FILE.py

./apyc --phase=2 [--library=DIR] FILE.py

The command lines from project 1 should still do the same thing. That is, phase=1 should
just parse your program and not do semantic analysis. The -o switch indicates the output
file. By default (the second form), the output files are FILEi.dast (“.dast” for “decorated
ast”). The directory DIR contains .py files for imported modules and for the special module
__builtin__.py, which contains the standard prelude. To process imported module M ,
your parser should read and process M.py. You’ll need to output only the AST for the main

Project #2 15

module (__main__), together with all the declaration nodes for __main__ and for the modules
you import (you don’t output AST nodes for the imported modules).

11 What to turn in

The directory you turn in (under the name proj2-n in your tags directory) should contain
a file Makefile that is set up so that

gmake

(the default target) compiles your program,

gmake check

runs all your tests against your program, and finally,

gmake APYC=PROG check

runs all your tests against the program PROG (by default, in other words, PROG is your
program, ./apyc). Finally,

gmake clean

should remove all files that are regeneratable or unnecessary. We’ll put a sample Makefile
in the staff proj2 repository directory and in the file ~cs164/hw/proj2 directory; feel free to
modify at will as long as these commands continue to work.

12 Assorted Advice

What, you haven’t started yet? First, review the Python language, and start writing and
revising test cases. You get points for thorough testing and documentation, and it should not
be difficult to get them, so don’t put this off to the last minute!

Again, be sure to ask us for advice rather than spend your own time getting frustrated
over an impasse. By now, you should have your partners’ phone numbers at least. Keep in
regular contact.

Be sure you understand what we provide. The skeleton classes actually do quite a bit for
you. Make sure you don’t reinvent the wheel.

Do not feel obliged to cram all the checks that are called for here into one method! Keep
separate checks in separate methods. To the extent possible, introduce and test them one at
a time. In fact, this project is structured in such a way that you can break it down into a set
of small problems, each implemented by a few methods that traverse the ASTs.

Keep your program neat at all times. Keep the formatting of your code correct at all
times, and when you remove code, remove it; don’t just comment it out. It’s much easier to
debug a readable program. Afraid that if you chop out code, you’ll lose it and not be able to
go back? That’s what Subversion is for. Archive each new version when you get it to compile

Project #2 16

(or whenever you take a break, for that matter). This will allow you to go back to earlier
versions at will.

Write comments for classes and functions before you write bodies, if only to clarify your
intent in your own mind. Keep comments up to date with changes. Remember that the idea
is that one should be able to figure how to use a function from its comment, without needing
to look at its body.

You still haven’t started?

	Summary
	Input and Output
	New AST Node Types
	Output Format
	Rewriting
	Types
	Type representation
	Subtyping Rules

	Special Methods for Operators
	Various Restrictions
	Predefined Names and the Standard Prelude
	Running the program
	What to turn in
	Assorted Advice

