Lecture 17: Types

Administrivia

- Autograder trial run: Tuesday night. I will run it only a few times and shut it off before morning. It comes on again at the deadline.

\(^1\)From material by G. Necula and P. Hilfinger

Last modified: Mon Feb 28 10:50:47 2011
Type Checking Phase

• Determines the type of each expression in the program, (each node in the AST that corresponds to an expression)

• Finds type errors.
 - Examples?

• The type rules of a language define each expression’s type and the types required of all expressions and subexpressions.
Types and Type Systems

- A type is a set of values together with a set of operations on those values.
- E.g., fields and methods of a Java class are meant to correspond to values and operations.
- A language’s type system specifies which operations are valid for which types.
- Goal of type checking is to ensure that operations are used with the correct types, enforcing intended interpretation of values.
- Notion of “correctness” often depends on what programmer has in mind, rather than what the representation would allow.
- Most operations are legal only for values of some types
 - Doesn’t make sense to add a function pointer and an integer in C
 - It does make sense to add two integers
 - But both have the same assembly language implementation:
 \[\text{movl y, %eax; addl x, %eax} \]
Uses of Types

• Detect errors:
 - Memory errors, such as attempting to use an integer as a pointer.
 - Violations of abstraction boundaries, such as using a private field from outside a class.

• Help compilation:
 - When Python sees \(x+y \), its type systems tells it almost nothing about types of \(x \) and \(y \), so code must be general.
 - In C, C++, Java, code sequences for \(x+y \) are smaller and faster, because representations are known.
Review: Dynamic vs. Static Types

- A *dynamic type* attaches to an object reference or other value. It’s a run-time notion, applicable to any language.

- The *static type* of an expression or variable is a constraint on the possible dynamic types of its value, enforced at compile time.

- Language is *statically typed* if it enforces a “significant” set of static type constraints.
 - A matter of degree: assembly language might enforce constraint that “all registers contain 32-bit words,” but since this allows just about any operation, not considered static typing.
 - C sort of has static typing, but rather easy to evade in practice.
 - Java’s enforcement is pretty strict.

- In early type systems, $\text{dynamic}_\text{type}(\mathcal{E}) = \text{static}_\text{type}(\mathcal{E})$ for all expressions \mathcal{E}, so that in all executions, \mathcal{E} evaluates to exactly type of value deduced by the compiler.

- Gets more complex in advanced type systems.
Subtyping

- Define a relation $X \preceq Y$ on classes to say that:

 An object (value) of type X could be used when one of type Y is acceptable

 or equivalently

 X conforms to Y

- In Java this means that X extends Y.

- Properties:

 - $X \preceq X$

 - $X \preceq Y$ if X inherits from Y.

 - $X \preceq Z$ if $X \preceq Y$ and $Y \preceq Z$.
Example

class A { ... }
class B extends A { ... }
class Main {
 void f () {
 A x; // x has static type A.
 x = new A(); // x’s value has dynamic type A.
 ...
 x = new B(); // x’s value has dynamic type B.
 ...
 }
}

Variables, with static type A can hold values with dynamic type $\leq A$, or in general...
Type Soundness

Soundness Theorem on Expressions.

\(\forall E. \text{dynamic_type}(E) \leq \text{static_type}(E) \)

• Compiler uses \text{static_type}(E) (call this type \(C \)).

• All operations that are valid on \(C \) are also valid on values with types \(\leq C \) (e.g., attribute (field) accesses, method calls).

• Subclasses only add attributes.

• Methods may be overridden, but only with same (or compatible) signature.
Typing Options

• **Staticly typed**: almost all type checking occurs at compilation time (C, Java). Static type system is typically rich.

• **Dynamically typed**: almost all type checking occurs at program execution (Scheme, Python, Javascript, Ruby). Static type system can be trivial.

• **Untyped**: no type checking. What we might think of as type errors show up either as weird results or as various runtime exceptions.
“Type Wars”

• Dynamic typing proponents say:
 - Static type systems are restrictive; can require more work to do reasonable things.
 - Rapid prototyping easier in a dynamic type system.
 - Use duck typing: define types of things by what operations they respond to (“if it walks like a duck and quacks like a duck, it's a duck”).

• Static typing proponents say:
 - Static checking catches many programming errors at compile time.
 - Avoids overhead of runtime type checks.
 - Use various devices to recover the flexibility lost by “going static:” subtyping, coercions, and type parameterization.
 - Of course, each such wrinkle introduces its own complications.
Using Subtypes

• In languages such as Java, can define types (classes) either to
 – Implement a type, or
 – Define the operations on a family of types without (completely)
 implementing them.

• Hence, relaxes static typing a bit: we may know that something is a
 Y without knowing precisely which subtype it has.
Implicit Coercions

- In Java, can write

  ```java
  int x = 'c';
  float y = x;
  ```

- But relationship between `char` and `int`, or `int` and `float` not usually called subtyping, but rather conversion (or coercion).

- Such implicit coercions avoid cumbersome casting operations.

- Might cause a change of value or representation,

- But usually, such coercions allowed implicitly only if type coerced to contains all the values of the that coerced from (a widening coercion).

- Inverses of widening coercions, which typically lose information (e.g., `int→char`), are known as narrowing coercions. and typically required to be explicit.

- `int→float` a traditional exception (implicit, but can lose information and is neither a strict widening nor a strict narrowing.)
Coercion Examples

Object x = ...; String y = ...;
int a = ...; short b = 42;
x = y; a = b; // OK
y = x; b = a; // ERRORS
{ x = (Object) y; // {OK
a = (int) b; // OK
y = (String) x; // OK but may cause exception
b = (short) a; // OK but may lose information

Possibility of implicit coercion complicates type-matching rules (see C++).
Type Inference

- Types of expressions and parameters need not be explicit to have static typing. With the right rules, might *infer* their types.

- The appropriate formalism for type checking is logical rules of inference having the form

 If Hypothesis is true, then Conclusion is true

- For type checking, this might become:

 If E_1 and E_2 have certain types, then E_3 has a certain type.

- *Given* proper notation, easy to read (with practice), so easy to check that the rules are accurate.

- Can even be mechanically translated into programs.
Prolog: A Declarative Programming Language

- Prolog is the most well-known *logic programming language*.
- Its statements “declare” facts about the desired solution to a problem. The system then figures out the solution from these facts.
- You saw this in CS61A.
- General form:

 \[\text{Conclusion} :- \text{Hypothesis}_1, \ldots, \text{Hypothesis}_k. \]

 for \(k \geq 0 \) means “may infer Conclusion by first establishing each Hypothesis.” (when \(k = 0 \), we generally leave off the ‘:’).

- Each conclusion and hypothesis is a kind of *term*, represent both programs and data. A term is:
 - A constant, such as \(a, \text{foo}, \text{bar12}, =, +, '(', 12, 'Foo' \).
 - A variable, denoted by an unquoted symbol that starts with a capital letter or underscore: \(E, \text{Type}, _\text{foo} \).
 - The nameless variable \(_\) stands for a different variable each time it occurs.
 - A structure, denoted in prefix form: \(\text{symbol}(\text{term}_1, \ldots, \text{term}_k) \).

 Very general: can represent ASTs, expressions, lists, facts.
• Constants and structures can also represent conclusions and hypotheses, just as some list structures in Scheme can represent programs.
Prolog Sugaring

• For convenience, allows structures written in infix notation, such as \(a + X \) rather than \(+ (a, X)\).

• List structures also have special notation:
 - Can write as \(.(a,.(b,.(c,[]))) \) or \(.(a,.(b,.(c,X))) \)
 - But more commonly use \([a, b, c]\) or \([a, b, c | X]\).
Inference Databases

• Can now express *ground* facts, such as
 \[\text{likes(brian, potstickers)}. \]

• *Universally quantified* facts, such as
 \[\text{eats(brian, X)}. \]\n (for all \(X \), brian eats \(X \)).

• Rules of inference, such as
 \[\text{eats(brian, X) :- isfood(X), likes(brian, X)}. \]\n (you may infer that brian eats \(X \) if you can establish that \(X \) is a food and brian likes it.)

• A collection (database) of these constitutes a Prolog program.
Examples: From English to an Inference Rule

• “If e_1 has type int and e_2 has type int, then $e_1 + e_2$ has type int:”

 $\text{typeof}(E_1 + E_2, \text{int}) :- \text{typeof}(E_1, \text{int}), \text{typeof}(E_2, \text{int})$.

• “All integer literals have type int:”

 $\text{typeof}(X, \text{int}) :- \text{integer}(X)$.

 (integer is a built-in predicate on terms).

• In general, our typeof predicate will take an AST and a type as arguments.
Soundness

• We’ll say that our definition of typeof is sound if
 - Whenever rules show that typeof(e,t), e always evaluates to a value of type t

• We only want sound rules,

• But some sound rules are better than others; here’s one that’s not very useful:
 typeof(X,any) :- integer(X).

Instead, would be better to be more general, as in
 typeof(X,any).

(that is, any expression X is an any.)
Example: A Few Rules for Java

- `typeof(! X, boolean) :- typeof(X, boolean).`
- `typeof(while(E, S), void) :- typeof(E, boolean), typeof(S, void).`
- `typeof(X,void) :- typeof(X,Y), valuetype(Y).`
- `valuetype(int).`
- `valuetype(double).`
- `...`
- `valuetype(array(X)) :- valuetype(X).`
The Environment

• What is the type of a variable instance? E.g., how do you show that typeof(x, int)?

• Ans: You can’t, in general, without more information.

• We need a hypothesis of the form “we are in the scope of a declaration of x with type T.”

• A type environment gives types for free names:
 • a mapping from identifiers to types.
 • (A variable is free in an expression if the expression contains an occurrence of the identifier that refers to a declaration outside the expression.
 - In the expression x, the variable x is free
 - In lambda x: x + y only y is free (Python).
 - In map(lambda x: g(x,y), x), x, y, map, and g are free.
Defining the Environment in Prolog

- Can define a predicate, say, `defn(I,T,E)`, to mean “I is defined to have type T in environment E.”

- We can implement such a defn in Prolog like this:

  ```prolog
  defn(I, T, [def(I,T) | _]).
  defn(I, T, [def(I1,_)|R]) :- dif(I,I1), defn(I,T,R).
  ```
 (dif is built-in, and means that its arguments differ).

- Now we revise `typeof` to have a 3-argument predicate: `typeof(E, T, Env)` means “E is of type T in environment Env,” allowing us to say

  ```prolog
  typeof(I, T, Env) :- defn(I, T, Env).
  ```
Examples Revisited

typeof(E1 + E2, int, Env)
 :- typeof(E1, int, Env), typeof(E2, int, Env).
typeof(X, int, _) :- integer(X).
typeof(!X, boolean, Env) :- typeof(X, boolean, Env).
typeof(while(E,S), void, Env) :-
 typeof(E, boolean, Env), typeof(S, boolean, Env).
Example: lambda (Python)

```prolog
typeof(lambda(X,E1), any->T, Env) :-
    typeof(E1,T, [def(X,any) | Env]).
```

In effect, `[def(X,any) | Env]` means “Env modified to map x to any and behaving like Env on all other arguments.”
Example: Same Idea for ‘let’ in the Cool Language

• Cool is an object-oriented language sometimes used for the project in this course.

• The statement `let x : T0 in e1` creates a variable `x` with given type `T0` that is then defined throughout `e1`. Value is that of `e1`.

• Rule (assuming that “let(X,T0,E1)” is the AST for `let`):

  ```prolog
  typeof(let(X,T0,E1), T1, Env) :-
  typeof(E1, T1, [def(X, T0)|Env]).
  ```

 “type of `let X: T0 in E1` is `T1`, assuming that the type of `E1` would be `T1` if free instances of `X` were defined to have type `T0`.”
Example of a Rule That's Too Conservative

- Let with initialization (also from Cool):

 \[
 \text{let } x : T0 \leftarrow e0 \text{ in } e1
 \]

- What's wrong with this rule?

 \[
 \text{typeof} \left(\text{let}(X, T0, E0, E1), T1, \text{Env} \right) :-
 \text{typeof} \left(E0, T0, \text{Env} \right),
 \text{typeof} \left(E1, T1, \text{def}(X, T0) \mid \text{Env} \right).
 \]

 (Hint: I said Cool was an object-oriented language).
Loosening the Rule

- Problem is that we haven’t allowed type of initializer to be subtype of T_0.
- Here’s how to do that:

 $$\text{typeof(let}(X, T_0, E_0, E_1), T_1, \text{Env}) :\neg\
 \text{typeof(E}_0, T_2, \text{Env}), T_2 \leq T_0,\
 \text{typeof(E}_1, T_1, [\text{def}(X, T_0) | \text{Env}]).$$

- Still have to define subtyping (written here as \leq), but that depends on other details of the language.
As Usual, Can Always Screw It Up

typeof(let(X, T0, E0, E1), T1, Env) :-
 typeof(E0, T2, Env), T2 <= T0,
 typeof(E1, T1, Env).

This allows incorrect programs and disallows legal ones. Examples?
Function Application

- Consider only the one-argument case (Java).
- AST uses 'call', with function and list of argument types.

\[
\text{typeof}(\text{call}(E1, [E2]), T, \text{Env}) : - \\
\text{typeof}(E1, T1\rightarrow T, \text{Env}), \text{typeof}(E2, T1a, \text{Env}), \\
T1a \leq T1.
\]
Conditional Expressions

- Consider:

 \[
 e_1 \text{ if } e_0 \text{ else } e_2 \\
 \]
 or (from C) \(e_0 \ ? \ e_1 \ : \ e_2 \).

- The result can be value of either \(e_1 \) or \(e_2 \).

- The dynamic type is either \(e_1 \)'s or \(e_2 \)'s.

- Either constrain these to be equal (as in ML):

 \[
 \text{typeof(if}(E_0,E_1,E_2), T, \text{Env}) :- \\
 \text{typeof}(E_0,\text{bool,Env}), \text{typeof}(E_1,T,\text{Env}), \text{typeof}(E_2,T,\text{Env}).
 \]

- Or use the smallest supertype at least as large as both of these types—the least upper bound (lub) (as in Cool):

 \[
 \text{typeof(if}(E_0,E_1,E_2), T, \text{Env}) :- \\
 \text{typeof}(E_0,\text{bool,Env}), \text{typeof}(E_1,T_1,\text{Env}), \text{typeof}(E_2,T_2,\text{Env}), \text{lub}(T,T_1,T_2).
 \]