Lecture 36: IL for Arrays

One-dimensional Arrays

- How do we process retrieval from and assignment to \(x[i] \), for an array \(x \)?
- We assume that all items of the array have fixed size—\(S \) bytes—and are arranged sequentially in memory (the usual representation).
- Easy to see that the address of \(x[i] \) must be
 \[\&x + S \cdot i, \]
 where \(\&x \) is intended to denote the address of the beginning of \(x \).
- Generically, we call such formulae for getting an element of a data structure access algorithms.
- The IL might look like this:
 \[
 \begin{align*}
 \text{cgen}(\&A[E], t_0) : \\
 &\text{cgen}(\&A, t_1) \\
 &\text{cgen}(E, t_2) \\
 \Rightarrow & t_3 := t_2 \cdot S \\
 \Rightarrow & t_0 := t_1 + t_3
 \end{align*}
 \]

Multi-dimensional Arrays

- A 2D array is a 1D array of 1D arrays.
- Java uses arrays of pointers to arrays for >1D arrays.
- But if row size constant, for faster access and compactness, may prefer to represent an MxN array as a 1D array of 1D rows (not pointers to rows): row-major order...
- Or, as in FORTRAN, a 1D array of 1D columns: column-major order.
- So apply the formula for 1D arrays repeatedly—first to compute the beginning of a row and then to compute the column within that row:
 \[\&A[i][j] = \&A + i \cdot S \cdot N + j \cdot S \]
 for an \(M \)-row by \(N \)-column array, where \(S \), again, is the size of an individual element.

IL for \(M \times N \) 2D array

\[
\begin{align*}
\text{cgen}(\&e1[e2,e3], t) : \\
&\text{cgen}(e1, t1); \text{cgen}(e2,t2); \text{cgen}(e3,t3) \\
&\text{cgen}(N, t4) \# (N need not be constant) \\
\Rightarrow & t5 := t4 \cdot t2 \\
\Rightarrow & t6 := t5 + t3 \\
\Rightarrow & t7 := t6 \cdot S \\
\Rightarrow & t := t7 + t1
\end{align*}
\]
Array Descriptors

- Calculation of element address &e1[e2,e3] has the form
 \[\text{VO} + S1 \times e2 + S2 \times e3 \]
 where
 - VO (&e1[0,0]) is the virtual origin.
 - S1 and S2 are strides.
 - All three of these are constant throughout the lifetime of the array (assuming arrays of constant size).

- Therefore, we can package these up into an array descriptor, which can be passed in lieu of the array itself, as a kind of “fat pointer” to the array:

| &e[0][0] | S×N | S |

Array Descriptors (II)

- Assuming that e1 now evaluates to the address of a 2D array descriptor, the IL code becomes:

```c
&cgen(&e1[e2,e3], t):
\text{cgen(e1, t1); cgen(e2,t2); cgen(e3,t3)}
\Rightarrow t4 := *t1; # The VO
\Rightarrow t5 := *(t1+4) # Stride #1
\Rightarrow t6 := *(t1+8) # Stride #2
\Rightarrow t7 := t5 \times t2
\Rightarrow t8 := t6 \times t3
\Rightarrow t9 := t4 + t7
\Rightarrow t10:= t9 + t8
```

Array Descriptors (III)

- By judicious choice of descriptor values, can make the same formula work for different kinds of array.

- For example, if lower bounds of indices are 1 rather than 0, must compute address
 \[&e[1,1] + S1 \times (e2-1) + S2 \times (e3-1) \]

- But some algebra puts this into the form
 \[\text{VO'} + S1 \times e2 + S2 \times e3 \]
 where
 \[\text{VO'} = \&e[1,1] - S1 - S2 = \&e[0,0] (if it existed). \]

- So with the descriptor

| VO' | S×N | S |

we can use the same code as on the last slide.