Lecture 36: IL for Arrays
One-dimensional Arrays

• How do we process retrieval from and assignment to $x[i]$, for an array x?

• We assume that all items of the array have fixed size—S bytes—and are arranged sequentially in memory (the usual representation).

• Easy to see that the address of $x[i]$ must be

$$\&x + S \cdot i,$$

where $\&x$ is intended to denote the address of the beginning of x.

• Generically, we call such formulae for getting an element of a data structure access algorithms.

• The IL might look like this:

```plaintext
cgen(&A[E], t_0):
cgen(&A, t_1)
cgen(E, t_2)
⇒ t_3 := t_2 \ast S
⇒ t_0 := t_1 + t_3
```
Multi-dimensional Arrays

• A 2D array is a 1D array of 1D arrays.
• Java uses arrays of pointers to arrays for >1D arrays.
• But if row size constant, for faster access and compactness, may prefer to represent an MxN array as a 1D array of 1D rows (not pointers to rows): row-major order...
• Or, as in FORTRAN, a 1D array of 1D columns: column-major order.
• So apply the formula for 1D arrays repeatedly—first to compute the beginning of a row and then to compute the column within that row:

\[\&A[i][j] = \&A + i \cdot S \cdot N + j \cdot S \]

for an M-row by N-column array, where S, again, is the size of an individual element.
IL for $M \times N$ 2D array

cgen(&e1[e2,e3], t):
 cgen(e1, t1); cgen(e2, t2); cgen(e3, t3)
 cgen(N, t4) # (N need not be constant)
⇒ t5 := t4 * t2
⇒ t6 := t5 + t3
⇒ t7 := t6 * S
⇒ t := t7 + t1
Array Descriptors

• Calculation of element address \&e1[e2,e3] has the form
 \[VO + S1 \times e2 + S2 \times e3 \]

 where
 - \(VO (\&e1[0,0]) \) is the virtual origin.
 - \(S1 \) and \(S2 \) are strides.
 - All three of these are constant throughout the lifetime of the array (assuming arrays of constant size).

• Therefore, we can package these up into an array descriptor, which can be passed in lieu of the array itself, as a kind of “fat pointer” to the array:

 \[
 \begin{array}{|c|c|c|}
 \hline
 \&e1[0][0] & S \times N & S \\
 \hline
 \end{array}
 \]
Array Descriptors (II)

- Assuming that e_1 now evaluates to the address of a 2D array descriptor, the IL code becomes:

 \[
 \text{cgen}(&e_1[e_2,e_3], t): \\
 \quad \text{cgen}(e_1, t_1); \text{cgen}(e_2,t_2); \text{cgen}(e_3,t_3) \\
 \Rightarrow t_4 := *t_1; \quad \# \text{The VO} \\
 \Rightarrow t_5 := *(t_1+4) \quad \# \text{Stride #1} \\
 \Rightarrow t_6 := *(t_1+8) \quad \# \text{Stride #2} \\
 \Rightarrow t_7 := t_5 \times t_2 \\
 \Rightarrow t_8 := t_6 \times t_3 \\
 \Rightarrow t_9 := t_4 + t_7 \\
 \Rightarrow t_{10} := t_9 + t_8
 \]
Array Descriptors (III)

- By judicious choice of descriptor values, can make the same formula work for different kinds of array.
- For example, if lower bounds of indices are 1 rather than 0, must compute address
 \[&e[1,1] + S1 \times (e2-1) + S2 \times (e3-1) \]
- But some algebra puts this into the form
 \[VO' + S1 \times e2 + S2 \times e3 \]
 where
 \[VO' = &e[1,1] - S1 - S2 = &e[0,0] \text{ (if it existed).} \]
- So with the descriptor

 | VO' | S×N | S |

 we can use the same code as on the last slide.