1 LL Parsing Ambiguities

An LL(k) grammar is a CFG used by a parser that scans input left-to-right (“L”), leftmost derivation (“L”), and uses k tokens of lookahead to predict the correct production. We’ve previously seen that a grammar is ambiguous if it has a parse tree that is not unique. A more formal definition of LL conflicts uses FIRST and FOLLOW sets.

- **FIRST(A)**: the set of all terminals that could occur first in an expansion of the terminal or nonterminal A (include ϵ if A can expand to ϵ)
- **FOLLOW(A)**: the set of all terminals that could follow an occurrence of the terminal or nonterminal A in a (partial) derivation

There are two main types of LL(1) conflicts:

- **FIRST/FIRST**: The FIRST sets of two different productions for same non-terminal intersect.
- **FIRST/FOLLOW**: The FIRST set of a grammar rule contains an epsilon and the intersection with its FOLLOW set is not empty.

Ex.1 Are the following grammars LL(1)? Justify your answer using FIRST and FOLLOW sets. (Thanks to Karen Lemone, at WPI, for these problems.)

(a) \[A \rightarrow dA \mid dB \mid f \quad B \rightarrow g \]

Answer: This is an instance of a FIRST/FIRST conflict. We can’t tell which of A’s production rule to follow. The FIRST and FOLLOW sets for this grammar are:

\[
\begin{align*}
\text{FIRST}(dA) &= \{ 'd' \} \\
\text{FIRST}(dB) &= \{ 'd' \} \\
\text{FIRST}(f) &= \{ 'f' \} \\
\text{FIRST}(g) &= \{ 'g' \}
\end{align*}
\]

\[
\begin{align*}
\text{FOLLOW}(A) &= \{ \} \\
\text{FOLLOW}(B) &= \{ \}
\end{align*}
\]

(b) \[A \rightarrow B \mid A + A \mid A \ast A \mid (A) \quad B \rightarrow \text{Num} \mid \text{Id} \]

Answer: This is also an instance of a FIRST/FIRST conflict that is caused by left recursion. The FIRST and FOLLOW sets for this grammar are:

\[
\begin{align*}
\text{FIRST}(\text{Num}) &= \{ \text{Num} \} \\
\text{FIRST}(\text{Id}) &= \{ \text{Id} \} \\
\text{FIRST}(\text{A } \ast \text{ A}) &= \{ '(' \}
\end{align*}
\]

\[
\begin{align*}
\text{FIRST}(A \ast A) &= \{ \text{Id, Num, '}' \} \\
\text{FIRST}(A + A) &= \{ \text{Id, Num, '}' \}
\end{align*}
\]

\[
\begin{align*}
\text{FOLLOW}(A) &= \{ '+', '*', ']' \} \\
\text{FOLLOW}(B) &= \{ '+', '*', ']' \}
\end{align*}
\]
Answer: This is an instance of a FIRST/FOLLOW conflict. FIRST(X) contains the empty string and the intersection of FIRST(X) and FOLLOW(X) is not empty:

\[
\begin{align*}
\text{FIRST}(Xd) &= \{ 'd' \} \\
\text{FIRST}(C) &= \{ \epsilon \} \\
\text{FIRST}(B a) &= \{ 'd' \}
\end{align*}
\]

\[
\begin{align*}
\text{FIRST}(\epsilon) &= \{ \epsilon \} \\
\text{FIRST}(d) &= \{ 'd' \}
\end{align*}
\]

\[
\begin{align*}
\text{FOLLOW}(S) &= \{ \} \\
\text{FOLLOW}(X) &= \{ 'd' \} \\
\text{FOLLOW}(C) &= \{ 'd' \} \\
\text{FOLLOW}(B) &= \{ 'a' \}
\end{align*}
\]

2 Resolving Conflicts

Ex.2 For the grammar from Ex.1(a), rewrite the grammar so that it is LL(1) by introducing the non-terminal \(AB \rightarrow A \mid B \).

Answer: This technique of factoring out terminals on the left decreases the amount of lookahead you need to perform.

\[
\begin{align*}
A &: d \ AB \\
B &: g \\
AB &: A \\
&| f \\
&| B
\end{align*}
\]

Ex.3 (Challenge Question) Consider the following grammar for numerical expressions with division, addition, and unary minus: \(E \rightarrow \text{Num} \mid E/E \mid E + E \mid -E \)

(a) Rewrite the grammar so that it is LL(1), so that ‘/’ has higher precedence than ‘+’, and so that ‘-’ has highest precedence. (Note that ‘+’ and ‘/’ will be parsed in a right-associative way. We can fix ‘+’ and ‘/’ to be left-associative in the semantic actions.) You may find the following procedure helpful for removing left recursion:

- Given a production \(A \rightarrow A\alpha_1 \mid ... \mid A\alpha_n \mid \beta_1 \mid ... \mid \beta_m \):
 - Replace the A production with \(A \rightarrow \beta_1 A' \mid ... \mid \beta_m A' \)
 - Create a new non-terminal \(A' \rightarrow \epsilon \mid \alpha_1 A' \mid ... \mid \alpha_n A' \)

Answer:

\[
\begin{align*}
\text{expr} &: \text{expr1 rest} \\
\text{expr1} &: \text{expr2 rest1} \\
\text{expr2} &: ' - ' expr2 \\
\text{rest} &: \epsilon \\
\text{rest1} &: \epsilon \\
&| '+' expr \\
&| '/' expr
\end{align*}
\]

(b) Compute the FIRST and FOLLOW sets for your re-written LL(1) grammar.

Answer:

\[
\begin{align*}
\text{FIRST}(\text{expr1 rest}) &= \text{FIRST}(\text{expr2 rest1}) = \{ ' - ', \text{NUM} \}
\end{align*}
\]

\[
\begin{align*}
\text{FIRST}('+') &= \{ '+' \} \\
\text{FIRST}('/') &= \{ '/' \}
\end{align*}
\]

\[
\begin{align*}
\text{FIRST}('-') &= \{ '-' \} \\
\text{FIRST}(\text{NUM}) &= \{ \text{NUM} \}
\end{align*}
\]

\[
\begin{align*}
\text{FIRST}(\epsilon) &= \{ \epsilon \}
\end{align*}
\]
FOLLOW(expr2) = \{'/','+','\}'
FOLLOW(expr1) = FOLLOW(rest1) = \{'+','-\}'
FOLLOW(expr) = FOLLOW(rest) = \{\}'

(c) Draw the LL(1) parsing table for the grammar. You may need following rules:

- For each production \(X \rightarrow A_1...A_n\):
 - For each \(1 \leq i \leq n\), and for each \(b \) in First\((A_i)\): Set \(T[X,b] = X \rightarrow A_1...A_n\).
 Stop when \(\epsilon\) is not in First\((A_i)\).
 - If \(A_1...A_n \rightarrow \ast \epsilon\), then for each \(b \) in Follow\((X)\): Set \(T[X,b] = \epsilon\).

Answer:

<table>
<thead>
<tr>
<th></th>
<th>(-)</th>
<th>(\text{NUM})</th>
<th>(\slash)</th>
<th>(\text{+})</th>
<th>(-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>expr</td>
<td>expr (\rightarrow) expr1 rest</td>
<td>expr (\rightarrow) expr1 rest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rest</td>
<td>expr1 (\rightarrow) expr2 rest1</td>
<td>expr1 (\rightarrow) expr2 rest1</td>
<td>rest (\rightarrow) + expr</td>
<td>(\epsilon)</td>
<td></td>
</tr>
<tr>
<td>expr1</td>
<td>expr1 (\rightarrow) expr2 rest1</td>
<td>expr1 (\rightarrow) expr2 rest1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rest1</td>
<td>rest1 (\rightarrow) / expr1</td>
<td>rest1 (\rightarrow) / expr1</td>
<td>(\epsilon)</td>
<td>(\epsilon)</td>
<td></td>
</tr>
<tr>
<td>expr2</td>
<td>expr2 (\rightarrow) - expr2</td>
<td>expr2 (\rightarrow) NUM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(d) (Challenge Question) Find a context-free language (CFL) for which there exists no LL\((k)\) grammar, for any \(k\).

(e) (Challenge Question) Find a CFL for which there is an LL\((k)\) grammar, for some \(k > 1\), but no LL\((1)\) grammar.