1. (a) Show that the language of all strings (over \(\Sigma = \{0, 1\} \)) which do not contain the substring 011 is a regular language by exhibiting a DFA/NFA that recognizes it.

(b) Suppose \(A \) is a regular language over \(\Sigma \). Let \(\Sigma' \) be some alphabet such that \(\Sigma \subset \Sigma' \). Using only DFAs, show that \(A \) is a regular language over \(\Sigma' \).

2. (Sipser 1.24) For any string \(w = w_1w_2 \ldots w_n \), the reverse of \(w \), written \(w^R \), is the string \(w \) in reverse order, \(w_n \ldots w_2w_1 \). For any language \(A \), let \(A^R = \{ w^R \mid w \in A \} \). Show that if \(A \) is regular, so is \(A^R \).

3. (Sipser 1.25) Let

\[\Sigma_3 = \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \ldots, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \right\} \]

\(\Sigma_3 \) contains all size 3 columns of 0s and 1s. A string of symbols in \(\Sigma_3 \) gives three rows of 0s and 1s. Consider each row to be a binary number and let

\[B = \{ w \in \Sigma_3^* \mid \text{the bottom row of } w \text{ is the sum of the top two rows} \} \]

For example,

\[\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \in B, \quad \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \notin B. \]

Show that \(B \) is regular. (Hint: Working with \(B^R \) is easier. You may assume the result claimed in the last problem.)

4. (Sipser 1.28) Let

\[\Sigma_2 = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}. \]
Here, Σ_2 contains all columns of 0s and 1s of height two. Consider the top and bottom rows to be strings of 0s and 1s and let

$$E = \{ w \in \Sigma_2^* | \text{the bottom row of } w \text{ is the reverse of the top row of } w \}.$$

Show that E is not regular.

5. Let x and y be strings and let L be any language. We say that x and y are distinguishable by L if some string z exists whereby exactly one of the strings xz and yz is a member of L. Otherwise, if for every string z, $xz \in L$ if and only if $yz \in L$, we say that x and y are indistinguishable by L. If x and y are indistinguishable by L we write $x \equiv_L y$.

(a) (Sipser 1.34) Show that \equiv_L is an equivalence relation.
(b) Suppose we have a set of strings $\{x_1, x_2, \ldots, x_k\}$ such that x_i and x_j are distinguishable by L for $i \neq j$. Show that any DFA which recognizes L must have at least k states.