1. (Sipser 4.10) Let

\[A = \{ \langle M \rangle | M \text{ is a DFA which doesn't accept any string containing an odd number of 1s} \} \]

Show that \(A \) is decidable.

2. (Sipser 4.18) Let \(A \) and \(B \) be two disjoint languages. Say that language \(C \) separates \(A \) and \(B \) if \(A \subseteq C \) and \(B \subseteq \overline{C} \). Show that any two disjoint co-Turing-recognizable languages are separable by some decidable language.

3. (Sipser 4.21) Let \(A \) be a Turing-recognizable language consisting of descriptions of Turing machines, \(\{ \langle M_1 \rangle, \langle M_2 \rangle, \ldots \} \), where every \(M_i \) is a decider. Prove that some decidable language is not decided by any decider \(M_i \) whose description appears in \(A \). (Hint: You may find it helpful to consider an enumerator for \(A \)).

4. (Sipser 4.13) Show that the problem of testing whether a CFG generates all strings in \(1^* \) is decidable. In other words, show that

\[\{ \langle G \rangle | G \text{ is a CFG over } \{0,1\}^* \text{ and } 1^* \subseteq L(G) \} \]

is a decidable language.