Homework 3

Out: 12 Feb, 2009
Due: 19 Feb., 2009

Note: Questions marked with an asterisk (*) are to be handed in. The others are for practice and will not be graded. Put your solutions to the (*) problems in the (now unique) homework box on Soda level 2 by 4pm on the due date. The usual remarks about clear answers and the collaboration policy still hold. Depending on grading resources, we may grade only a random subset of the problems and check off the rest; so you are advised to attempt all questions.

1. Which of the following languages are regular? If the language is regular, exhibit a finite automaton or a regular expression for it. If not, give a careful proof using the pumping lemma.
 (a) (*) The set of all strings over the alphabet \{ (,) \} that consist of correctly nested pairs of parentheses. (E.g., the string ‘((())())’ belongs to this language, but the strings ‘())(‘ and ‘((’ do not.)
 (b) (*) The set of all words over the alphabet \{ a, b \} in which the number of occurrences of “abb” and of “bba” are the same. [Note: The string abba contains one occurrence of each.]
 (c) The language \(A = \{ w \in \{ 0, 1 \}^* : w = 1^k y, \text{ where } y \in \{ 0, 1 \}^* \text{ contains at least } k \text{'s, for some } k \geq 1 \} \). Note that 1101010 \(\in A \) for both \(k = 1 \) (its a 1 followed by 101010) and \(k = 2 \) (its a 11 followed by 01010), but 100 \(\notin A \) because there is no \(k \) for which the def. applies.
 (d) The language \(B = \{ w \in \{ 0, 1 \}^* : w = 1^k y, \text{ where } y \in \{ 0, 1 \}^* \text{ contains at most } k \text{'s, for some } k \geq 1 \} \).
 (e) (*) The set of all words over the alphabet \{ a, b \} in which the number of occurrences of “aaa” and of “bbb” are the same. [Note: The string bbbaaaabbb contains two occurrences of each.]
 (f) The language \{0^i1^j : i, j \geq 0 \text{ and } i \neq j \}. [HINT: Why can’t you use the pumping lemma in this case? It might be helpful to consider the complement of the language.]

2. (More closure) Let \(L \) be a regular language. Show that the following languages are regular.
 (a) (*) The language \(\text{min}(L) = \{ x \in L : \text{no proper prefix of } x \text{ is in } L \} \).
 (b) The language \(L_{10} \) consisting of the lexicographically first 10 strings of \(L \).
 (c) The language \(\frac{1}{2}(L) = \{ x : \exists y \text{ s.t. } xy \in L \text{ and } |x| = |y| \} \). [HINT: This part is quite challenging. Given a DFA for \(L \), construct a NFA for \(\frac{1}{2}(L) \). The “product construction” used in the proof that regular languages are closed under intersection should be useful here.]
 (d) (*) The language DROP-OUT\((L) \). For a language \(L \), DROP-OUT\((L) = \{ xz : xyz \in L, \text{ where } x, z \in \Sigma^*, y \in \Sigma \} \); i.e., its the language of all strings that can be obtained by removing one symbol from a string in \(L \).

3. Let \(M \) be a DFA with \(n \) states. Prove that the language accepted by \(M \) is infinite if and only if \(M \) accepts some string of length at least \(n \) and less than \(2n \).
4. Which of the following statements are true? If the statement is true, provide a proof; if it is false, provide a simple counterexample.

(a) If the language L contains a regular language L', then L is regular.
(b) (*) If L_1 and L_2 are not regular, then $L_1 \cap L_2$ is not regular.
(c) (*) If $L_1, L_2, L_3 \ldots$ are all regular, then the language $\bigcup_{i=1}^{\infty} L_i$ is also regular.