1. This problem consists of four parts, three of which are designed to improve your understanding of the Myhill-Nerode Theorem and the DFA minimization algorithm.

 (a) (*) Recall the following DFA M, which we saw in Homework 1:

 ![DFA Diagram]

 Determine the equivalence relation R_M for this DFA. You should specify the equivalence relation by writing down each of its equivalence classes in the form of a regular expression. [NOTES: (i) Recall that the relation R_M is defined by $xR_M y$ iff M ends up in the same state on inputs x and y. (ii) Recall also from HW1 that you have already described the set of strings that take M to each of its states.]

 (b) (*) In class we showed that if L is a regular language, then the equivalence relation R_L (indistinguishability) has only finitely many equivalence classes (these correspond to the states of the minimal DFA for L). Now consider the language $L = \{0^n1^n : n \geq 0\}$. By describing the equivalence classes of R_L, prove that L is not regular. [NOTES: (i) Recall that the relation R_L is defined by $xR_L y$ iff $\forall z (xz \in L \iff yz \in L)$. Of course, we could also prove that L is not regular using the pumping lemma; the point of this problem is to get you to use a different method based on the Myhill-Nerode Theorem.]

 (c) Now use the pumping lemma to show that L is not regular.

 (d) (*) Apply the minimization procedure discussed in class to construct a minimal DFA that is equivalent to the following DFA. Show clearly the steps you used to arrive at your answer; you should consider the pairs of states in lexicographic order.

 ![Minimized DFA Diagram]
2. Consider the language \(L = \{ w = a^i b^j c^k : i, j, k \geq 0 \text{ and if } i = 1 \text{ then } j = k \} \).

(a) Show that \(L \) "acts like" a regular language with respect to the pumping lemma. Specifically, give a pumping length \(p \) and show that \(L \) satisfies the conditions of the lemma for this \(p \).

(b) Now show that \(L \) is NOT regular.

(c) Why is this not a contradiction?

3. (*) Show that for any positive integer \(n \) there is a language \(L_n \) for which both of the following statements hold

(a) There is a DFA with \(n \) states that recognizes \(L_n \) and

(b) No DFA with fewer than \(n \) states recognizes \(L_n \).

4. The pumping lemma says that every regular language \(L \) has a pumping length \(p \), and that any string \(w = w_1 w_2 \cdots w_n \in L \) with \(n \geq p \) can be pumped. Clearly if \(p \) is a pumping length for \(L \), so is \(p' \) with \(p' \geq p \). The minimum pumping length for \(L \) is the smallest \(p \) that is a pumping length for \(L \). [e.g., when \(L = 01^* \), the minimum pumping length is 2: the string \(w = 0 \) is in \(L \), has length 1, but cannot be pumped (why?), but any string in \(L \) of length \(\geq 2 \) must contain a 1 and can be pumped (why?, how?).]

For each of the following languages, find the minimum pumping length and justify your answer.

(a) \(L = 0001^* \)
(b) (*) \(L = 1011 \)
(c) \(L = 0^*1^* \)
(d) (*) \(L = 001 \cup 0^*1^* \)
(e) (*) \(L = 10(11^*0)0 \)
(f) \(L = 0^*1^*0^*1^* \cup 10^*1 \)
(g) (*) \(L = (01)^* \)
(h) (*) \(L = \epsilon \)
(i) (*) \(L = 1^*01^*01^* \)