Useful Sums:
\[\sum_{k=1}^{n} k^m = \frac{n^{m+1}}{m+1} + O(n^m) \]
\[\sum_{k=0}^{\infty} a^k = \frac{1}{1-a} \]
\[\sum_{k=1}^{n} \frac{1}{k} = H_n \approx \ln n \]
\[\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \]

Exponentials and Stirling:
\[(1 + \frac{1}{n})^n \approx e \]
\[(1 - \frac{1}{n})^n \approx e^{-1} \]
\[n! \approx \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \left(1 + \frac{1}{12n} + O\left(\frac{1}{n^2} \right) \right) \]

Binomial Distribution: with parameters \(n \) and \(p \):
\[\Pr[X = k] = \binom{n}{k} p^k (1-p)^{n-k} \]
and \(\binom{n}{k} \) is also the coefficient of \(x^k \) in \((1 + x)^n \)
with \(\mathbb{E}[X] = np \) and \(\text{Var}(X) = np(1-p) \).

Geometric Distribution: with parameter \(p \):
\[\Pr[X = k] = (1-p)^{k-1} p \]
where \(\mathbb{E}[X] = 1/p \) and \(\text{Var}(X) = (1-p)/p^2 \).

Markov Bound: For \(X \) a non-negative random variable:
\[\Pr[X \geq t] \leq \frac{\mathbb{E}[X]}{t} \]

Chebyshev Bound: For \(X \) any random variable:
\[\Pr[|X - \mu| \geq t \sigma_X] \leq \frac{1}{t^2} \quad \text{or} \quad \Pr[|X - \mu| \geq s] \leq \frac{\text{Var}(X)}{s^2} \]

Chernoff lower tail bound: For \(X \) any random variable which is a sum of independent Poisson trials with \(\mathbb{E}[X] = \mu \) and \(\delta \in (0, 1] \):
\[\Pr[X \leq (1 - \delta)\mu] \leq \left(\frac{e^{-\delta}}{(1 - \delta)^{(1-\delta)}} \right)^\mu \leq \exp(-\mu\delta^2/2) \]

Chernoff upper tail bound: For \(X \) any random variable which is a sum of independent Poisson trials with \(\mathbb{E}[X] = \mu \) and \(\delta > 0 \):
\[\Pr[X \geq (1 + \delta)\mu] \leq \left(\frac{e^\delta}{(1 + \delta)^{(1+\delta)}} \right)^\mu \leq \begin{cases} \exp(-\mu\delta^2/3) & \text{for } \delta \leq 1 \\ 2^{-(1+\delta)\mu} & \text{for } \delta \geq 5 \end{cases} \]
Poisson Distribution: with parameter λ:

$$\Pr[X = k] = \frac{\lambda^k \exp(-\lambda)}{k!}$$

mean is λ and variance equals λ.

Lipschitz Condition The function f is said to be *Lipschitz with bound* c if changing any single argument changes the value of the function by at most c, that is there exists a c such that for all i, x_1, \ldots, x_n and y:

$$|f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_n)| \leq c$$

Azuma-Hoeffding Inequality: Let $F = f(X_1, \ldots, X_n)$ be a function of random variables X_1, \ldots, X_n, so that

$$Z_i = \mathbb{E}[F|X_1, \ldots, X_i] \text{ for } i = 1, \ldots, n \text{ and } Z_0 = \mathbb{E}[F]$$

is a Doob Martingale. If f is Lipschitz with bound c, then

$$\Pr(|Z_n - Z_0| \geq \lambda) \leq 2 \exp(-\lambda^2/(nc^2))$$