1. Let G be a random graph chosen uniformly from $G_{n,p}$.

 (a) Give an upper bound on the probability that G contains a k-clique.

 (b) Give an exact formula for the probability of a k-clique using the inclusion-exclusion principle.

2. Let G be a random graph chosen uniformly from $G_{n,N}$. Using coupon collecting analysis, compute the probability that edges of G form a vertex cover, i.e. touch every vertex in G.

3. Compute the expected number of iterations of the Hamiltonian cycle algorithm using epoch analysis as follows. Let X_i be the number of iterations required to extend the path from length $i-1$ to length i. Then
 \[X = \sum_{i=1}^{n} X_i \]

 is the time required to produce a Hamiltonian path. Let Y be the number of iterations required to close the loop (find a cycle) after a Hamiltonian path is found. Compute the total expected running time which is $E[X + Y]$.