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Salvador Dali

“Gala Contemplating the Mediterranean Sea, 

which at 30 meters becomes the portrait 

of Abraham Lincoln”, 1976







Spatial Frequencies and Perception

Campbell-Robson contrast sensitivity curve



A nice set of basis

This change of basis has a special name…

Teases away fast vs. slow changes in the image.



Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):
 Any univariate function can 

be rewritten as a weighted 
sum of sines and cosines of 
different frequencies. 

Don’t believe it?  
• Neither did Lagrange, 

Laplace, Poisson and 
other big wigs

• Not translated into 
English until 1878!

 But it’s (mostly) true!
• called Fourier Series

...the manner in which the author arrives at these 

equations is not exempt of difficulties and... his analysis 

to integrate them still leaves something to be desired 

on the score of generality and even rigour.
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A sum of sines

Our building block:

 

Add enough of them to get 

any signal f(x) you want!

How many degrees of 

freedom?

What does each control?

Which one encodes the 

coarse vs. fine structure of 

the signal?
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Fourier Transform

We want to understand the frequency  of our signal.  So, 

let’s reparametrize the signal by  instead of x:
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f(x) F()Fourier 

Transform

F() f(x)Inverse Fourier 

Transform

For every  from 0 to inf, F() holds the amplitude A 

and phase  of the corresponding sine  
• How does F hold both? 
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We can always go back:



Time and Frequency

example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)



Time and Frequency

example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)
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Frequency Spectra

example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)
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Frequency Spectra

Usually, frequency is more interesting than the phase
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra



Frequency Spectra



FT: Just a change of basis
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M * f(x) = F()

F x N N x 1 F x 1



IFT: Just a change of basis
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M-1 * F() = f(x)

N x F F x 1 N x 1



Finally: Scary Math



Finally: Scary Math

…not really scary:

is hiding our old friend:

So it’s just our signal f(x) times sine at frequency 

)sin()cos( xixe xi  +=









 = +=

)+=+

−

Q

P
QPΑ

xAxQxP

122 tan

sin()sin()cos(





)+xsin(

phase can be encoded

by sin/cos pair



Extending to 2D





Extension to 2D

Image as a sum of basis images
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Extension to 2D

in Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));



Fourier analysis in images

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering



Signals can be composed

+ =

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

More: http://www.cs.unm.edu/~brayer/vision/fourier.html



Man-made Scene

Amplitude Spectrum



Can change spectrum, then reconstruct

Local change in one domain, courses global change in the other 



Low and High Pass filtering



Man-made Scene

Amplitude Spectrum

what does phase look like, you ask?

(less visually informative) 



The importance of Phase

Slide: Andrew Zisserman



The Convolution Theorem

The greatest thing since sliced (banana) bread!

• The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms

• The inverse Fourier transform of the product of two 
Fourier transforms is the convolution of the two 
inverse Fourier transforms

• Convolution in spatial domain is equivalent to 
multiplication in frequency domain!
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2D convolution theorem example

*

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|



Why does the Gaussian give a nice smooth 
image, but the square filter give edgy artifacts?

Gaussian Box filter

Filtering



Fourier Transform pairs



Gaussian



Box Filter



Low-pass, Band-pass, High-pass filters

low-pass:

High-pass / band-pass:



Edges in images



Low Pass vs. High Pass filtering

-

Image Smoothed

=

Details



Filtering – Sharpening

+α

Image Details

=

“Sharpened” α=1



Filtering – Sharpening
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Image Details

“Sharpened” α=0



Filtering – Sharpening
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Image Details

“Sharpened” α=2



Filtering – Sharpening
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+α

Image Details

“Sharpened” α=0



Filtering – Extreme Sharpening
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+α

Image Details

“Sharpened” α=10



Unsharp mask filter

Gaussian
unit impulse

Laplacian of Gaussian

))1(()1()( gefgffgfff  −+=−+=−+

image blurred

image

unit impulse

(identity)



5 min recap

Fourier Transform in 5 minutes: The Case of 

the Splotched Van Gogh, Part 3

https://www.youtube.com/watch?v=JciZYrh36LY

https://www.youtube.com/watch?v=JciZYrh36LY
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