The Frequency Domain, without tears

Many slides borrowed from
Steve Seitz

Somewhere in Cinque Terre, May 2005
CS180: Intro to Computer Vision and Comp. Photo Alexei Efros \& Angjoo Kanazawa, UC Berkeley, Fall 2023

Salvador Dali
"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976

Spatial Frequencies and Perception

Campbell-Robson contrast sensitivity curve

A nice set of basis

Teases away fast vs. slow changes in the image.

This change of basis has a special name...

Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807 Any univariate function ca be rewritten as a weightec sum of sines and cosines different frequencies.

Don't believe it?

- Neither did Lagrange, Laplace, Poisson and other big wigs
- Not translated into English until 1878!
But it's (mostly) true!
- called Fourier Series
...the manner in which the author arrives at these equations is not exempt of difficulties and... his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.

A sum of sines

Our building block:

$A \sin (\omega x+\phi)$

Add enough of them to get any signal $f(x)$ you want!

How many degrees of freedom?

What does each control?

Which one encodes the coarse vs. fine structure of the signal?

$$
\begin{aligned}
& f(\text { target })= \\
& f_{1}+f_{2}+f_{3} \ldots+f_{n}+\ldots
\end{aligned}
$$

Fourier Transform

We want to understand the frequency ω of our signal. So, let's reparametrize the signal by ω instead of x :

$$
f(x) \longrightarrow \quad \underset{\substack{\text { Fourier } \\ \text { Transform }}}{\substack{\text { T } \\ \\ \hline \\ \hline}}
$$

For every ω from 0 to inf, $\boldsymbol{F}(\omega)$ holds the amplitude A and phase ϕ of the corresponding sine $A \sin (\omega x+\phi)$

- How does F hold both?

$$
\begin{gathered}
F(\omega)=R(\omega)+i I(\omega) \\
A= \pm \sqrt{R(\omega)^{2}+I(\omega)^{2}} \quad \phi=\tan ^{-1} \frac{I(\omega)}{R(\omega)}
\end{gathered}
$$

We can always go back:

$$
\left.F(\omega) \longrightarrow \begin{array}{c}
\text { Inverse Fourier } \\
\text { Transform }
\end{array} \longrightarrow \boldsymbol{f}\right)
$$

Time and Frequency

example : $g(t)=\sin (2 p f t)+(1 / 3) \sin (2 p(3 f) t)$

Time and Frequency

example : $g(t)=\sin (2 p f t)+(1 / 3) \sin (2 p(3 f) t)$

Frequency Spectra

example: $g(t)=\sin (2 p f t)+(1 / 3) \sin (2 p(3 f) t)$

Frequency Spectra

Usually, frequency is more interesting than the phase

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

Frequency Spectra

FT: Just a change of basis

$M^{*} f(x)=F(\omega)$

IFT: Just a change of basis

$$
\mathrm{M}^{-1 *} F(\omega)=f(x)
$$

- N x F

F x 1
N x 1

Finally: Scary Math

Fourier Transform : $F(\omega)=\int_{-\infty} f(x) e^{-i \omega x} d x$
Inverse Fourier Transform : $f(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F(\omega) e^{i \omega x} d \omega$

Finally: Scary Math

Inverse Fourier Transform : $f(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F(\omega) e^{i \omega x} d \omega$
...not really scary: $e^{i \omega x}=\cos (\omega x)+i \sin (\omega x)$ is hiding our old friend: $\sin (\omega x+\phi)$
phase can be encoded

$$
P \cos (x)+Q \sin (x)=A \sin (x+\phi)
$$

$$
\text { by sin/cos pair } \rightarrow A= \pm \sqrt{P^{2}+Q^{2}} \quad \phi=\tan ^{-1}\left(\frac{P}{Q}\right)
$$

So it's just our signal $f(x)$ times sine at frequency ω

Extending to 2D

Extension to 2D

Image as a sum of basis images

Extension to 2D

in Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));

Fourier analysis in images

Signals can be composed

http://sharp.bu.edu/~slehar/fourier/fourier.html\#filtering More: http://www.cs.unm.edu/~brayer/vision/fourier.html

Man-made Scene

Amplitude Spectrum

Can change spectrum, then reconstruct

Local change in one domain, courses global change in the other

Low and High Pass filtering

Man-made Scene

Amplitude Spectrum

what does phase look like, you ask? (less visually informative)

The importance of Phase

Slide: Andrew Zisserman

The Convolution Theorem

The greatest thing since sliced (banana) bread!

- The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$
\mathrm{F}[g * h]=\mathrm{F}[g] \mathrm{F}[h]
$$

- The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms

$$
\mathrm{F}^{-1}[g h]=\mathrm{F}^{-1}[g] * \mathrm{~F}^{-1}[h]
$$

- Convolution in spatial domain is equivalent to multiplication in frequency domain!

2D convolution theorem example

Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Fourier Transform pairs

Spatial domain

Frequency domain

Gaussian

Box Filter

Low-pass, Band-pass, High-pass filters

low-pass:

High-pass / band-pass:

Edges in images

Low Pass vs. High Pass filtering

Smoothed

Details

Filtering - Sharpening

Filtering - Sharpening

Filtering - Sharpening

Filtering - Sharpening

Filtering - Extreme Sharpening

Unsharp mask filter

5 min recap
Fourier Transform in 5 minutes: The Case of the Splotched Van Gogh, Part 3
https://www.youtube.com/watch?v=JciZYrh36LY

