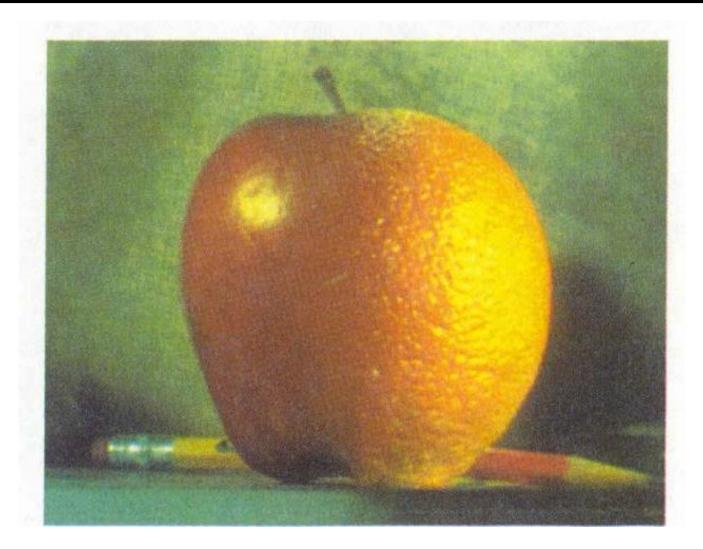
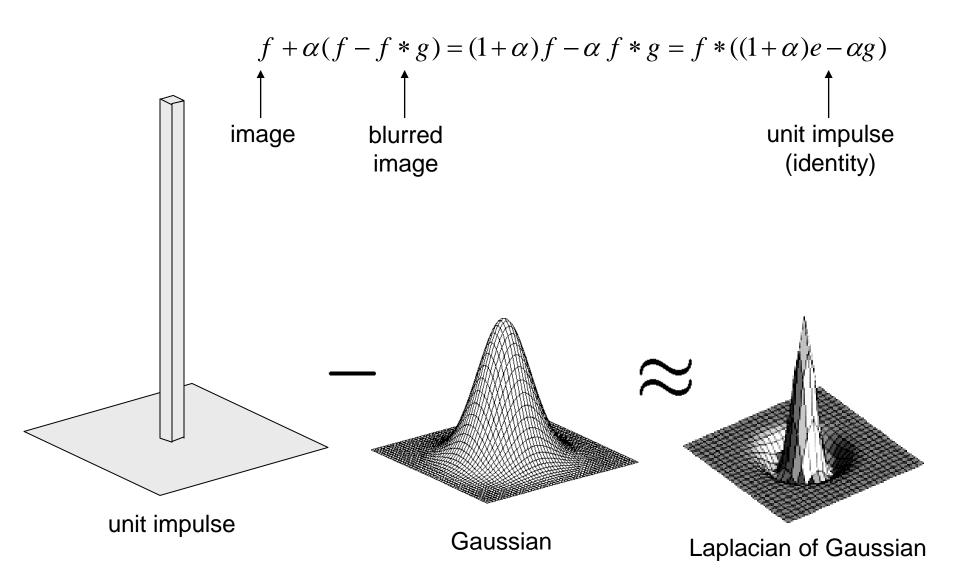
Pyramid Blending, Templates, NL Filters

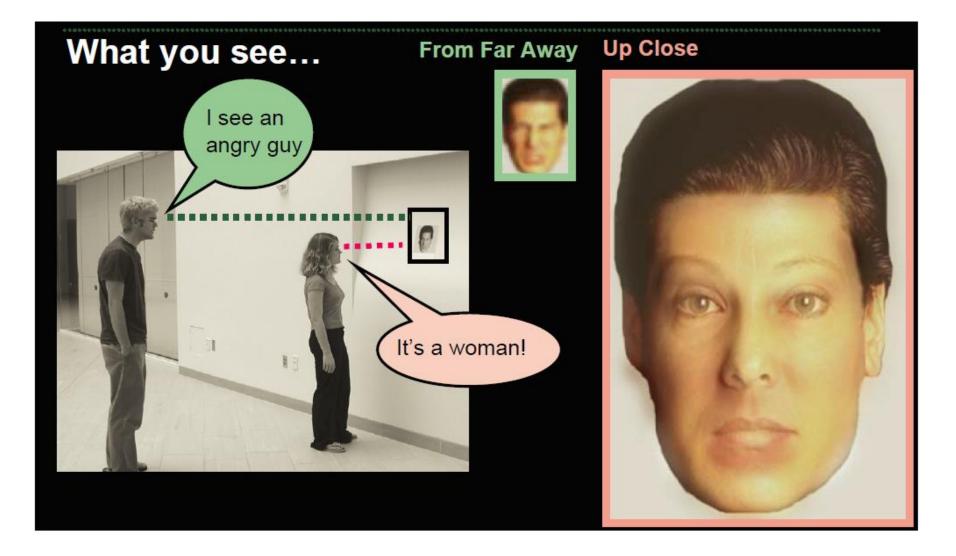


CS180: Intro to Comp. Vision and Comp. Photo Alexei Efros & Angjoo Kanazawa, UC Berkeley, Fall 2023

Unsharp mask filter

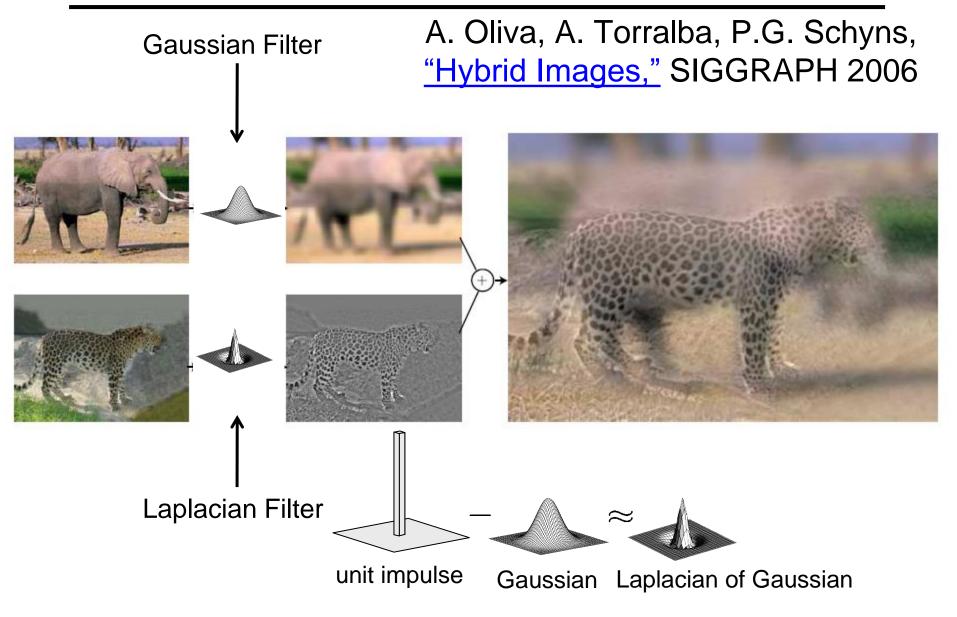


application: Hybrid Images

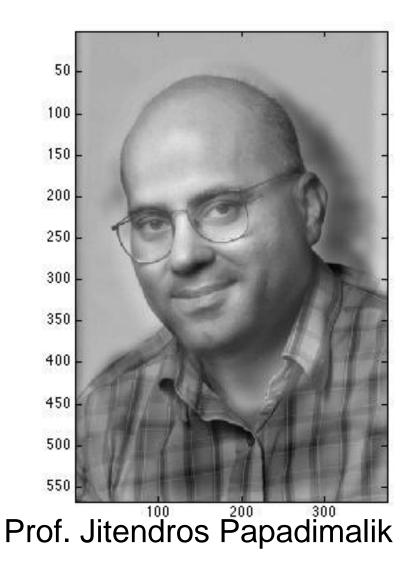


Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

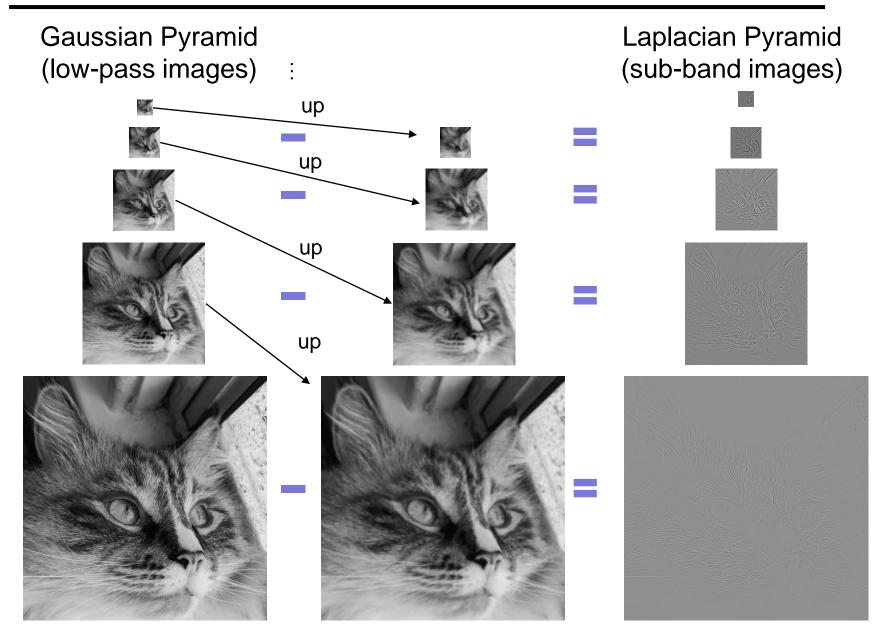
Application: Hybrid Images



Yestaryear's homework (CS194-26: Riyaz Faizullabhoy)

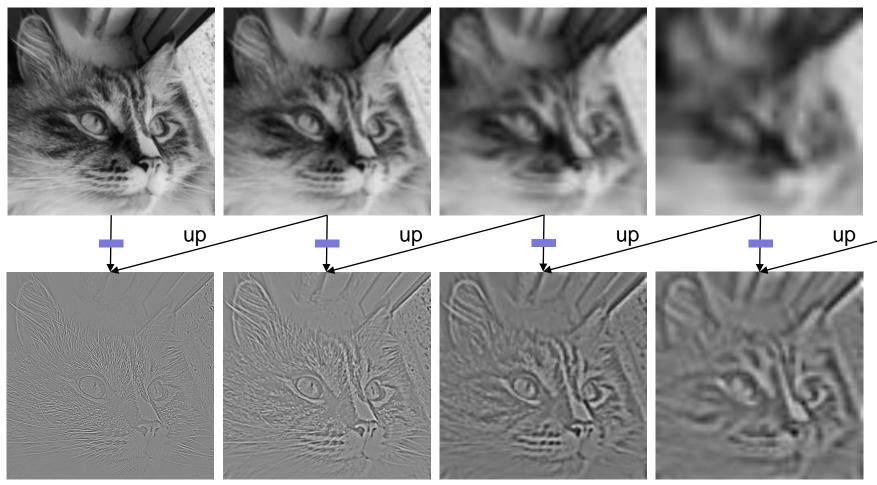


Band-pass filtering in spatial domain



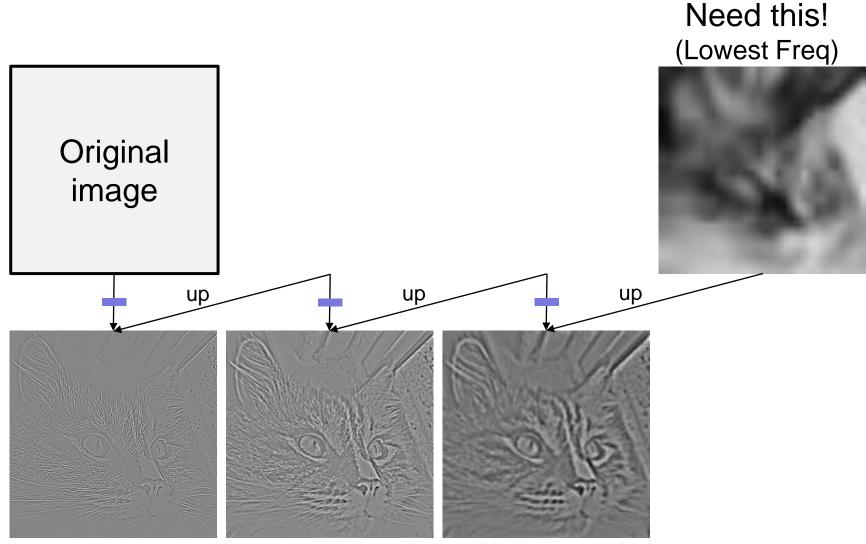
As a stack

Gaussian Pyramid (low-pass images)



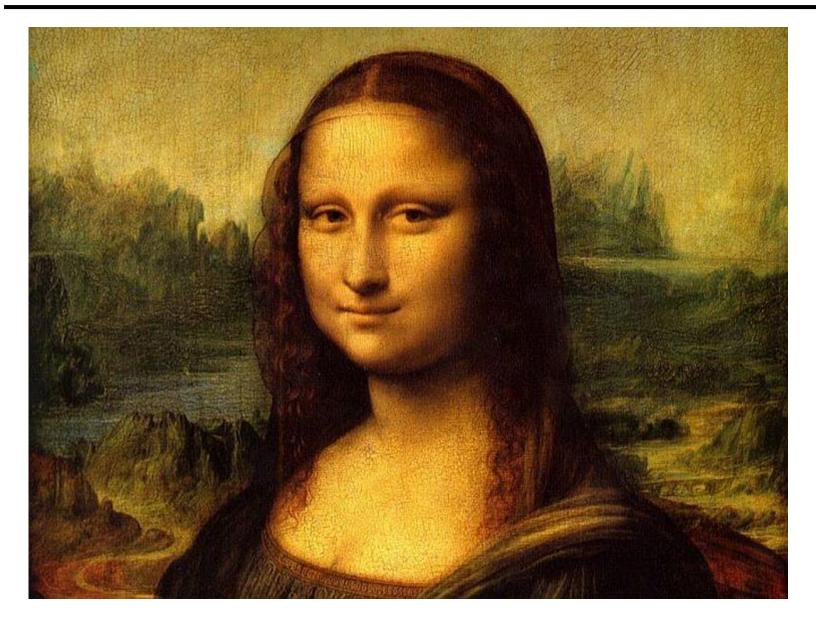
Laplacian Pyramid (sub-band images) Created from Gaussian pyramid by subtraction

Laplacian Pyramid

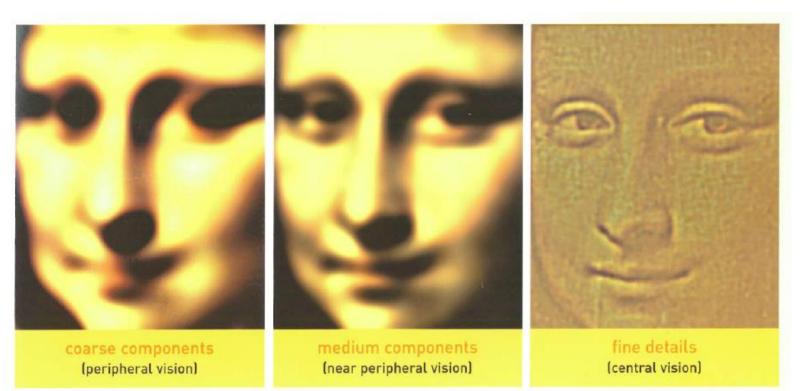


How can we reconstruct (collapse) this pyramid into the original image?

Da Vinci and The Laplacian Pyramid



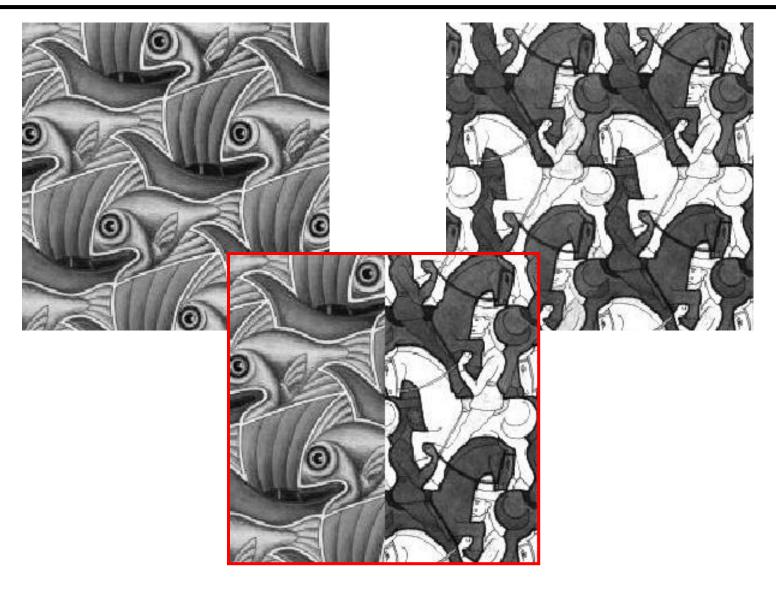
Da Vinci and The Laplacian Pyramid



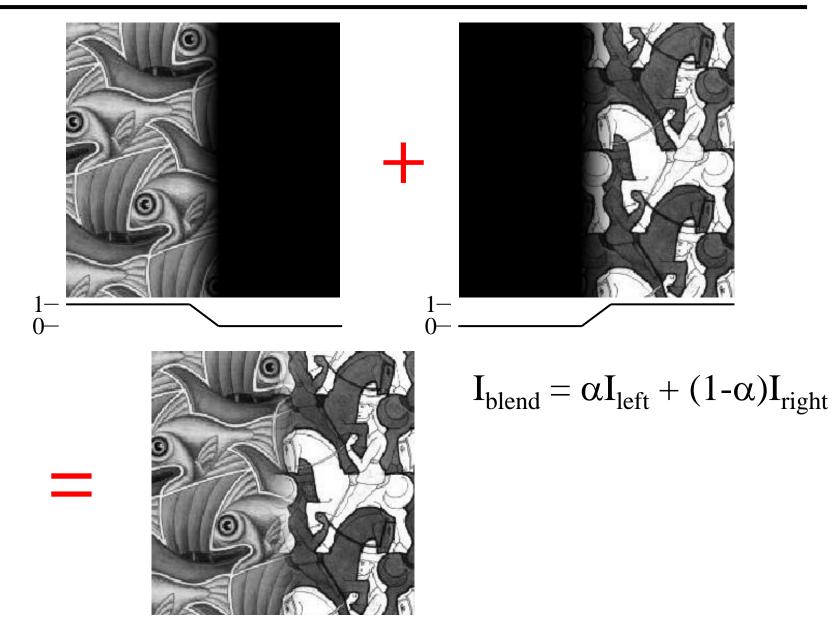
Leonardo playing with peripheral vision

Livingstone, Vision and Art: The Biology of Seeing

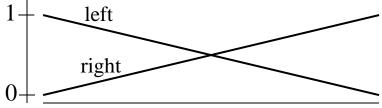
Blending

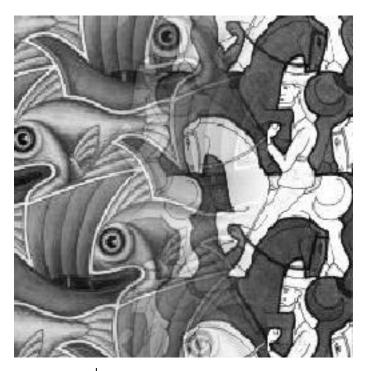


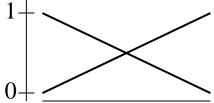
Alpha Blending / Feathering



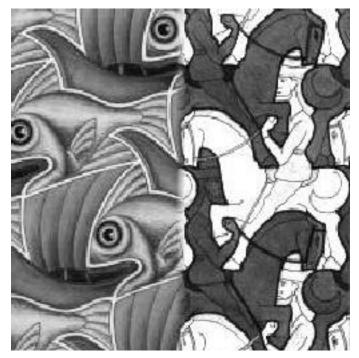
Affect of Window Size





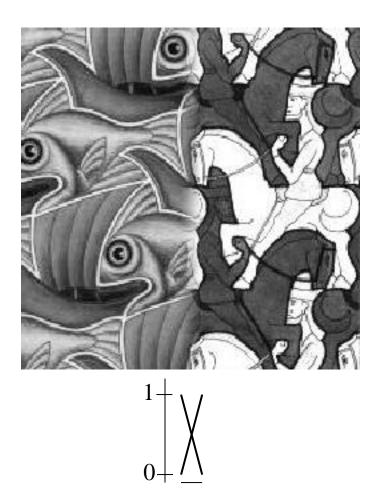


Affect of Window Size





Good Window Size



"Optimal" Window: smooth but not ghosted

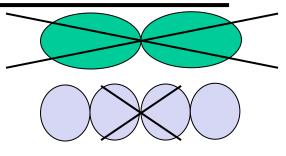
What is the Optimal Window?

To avoid seams

• window = size of largest prominent feature

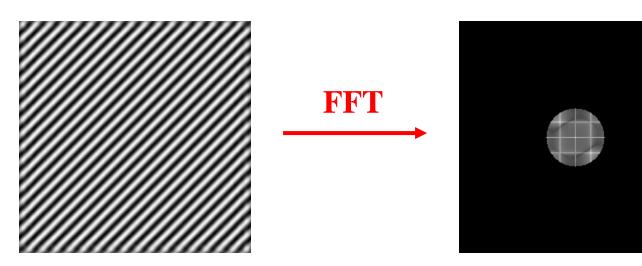
To avoid ghosting

window <= 2*size of smallest prominent feature

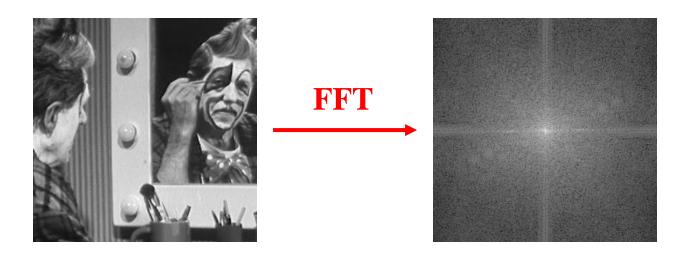


Natural to cast this in the Fourier domain

- largest frequency <= 2*size of smallest frequency
- image frequency content should occupy one "octave" (power of two)



What if the Frequency Spread is Wide



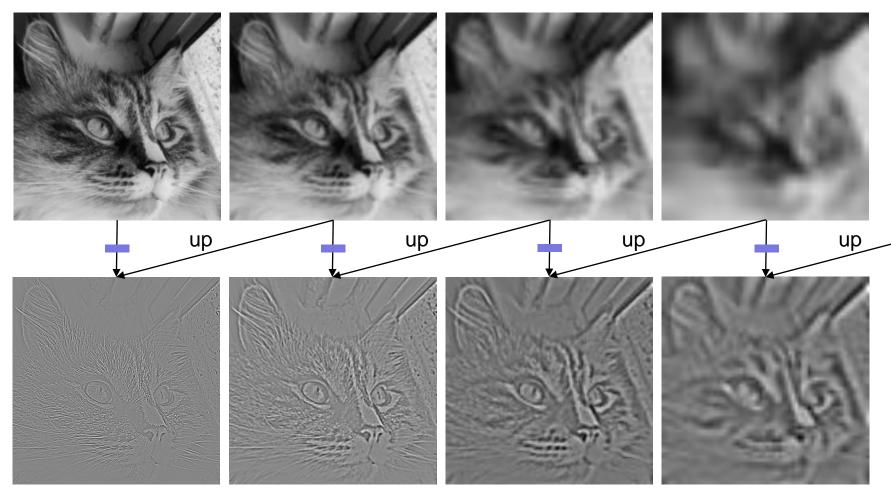
Idea (Burt and Adelson)

- Compute $F_{left} = FFT(I_{left}), F_{right} = FFT(I_{right})$
- Decompose Fourier image into octaves (bands)
 - $F_{\text{left}} = F_{\text{left}}^{1} + F_{\text{left}}^{2} + \dots$
- Feather corresponding octaves F_{left}ⁱ with F_{right}ⁱ
 - Can compute inverse FFT and feather in spatial domain
- Sum feathered octave images in frequency domain

Better implemented in spatial domain

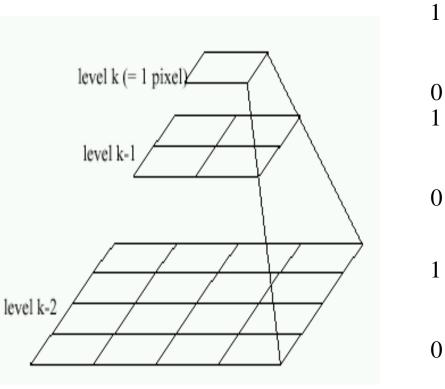
As a stack

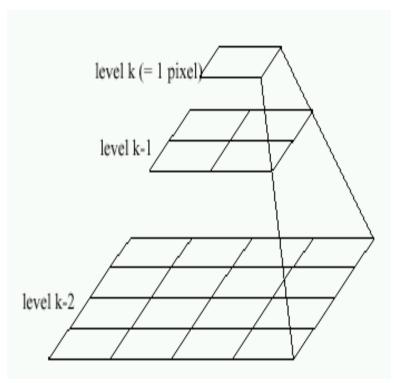
Gaussian Pyramid (low-pass images)



Bandpass Images

Pyramid Blending



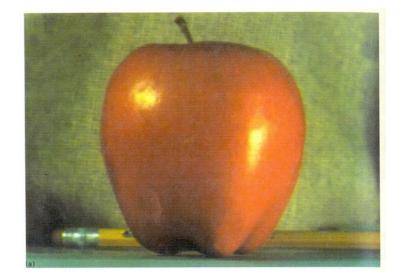


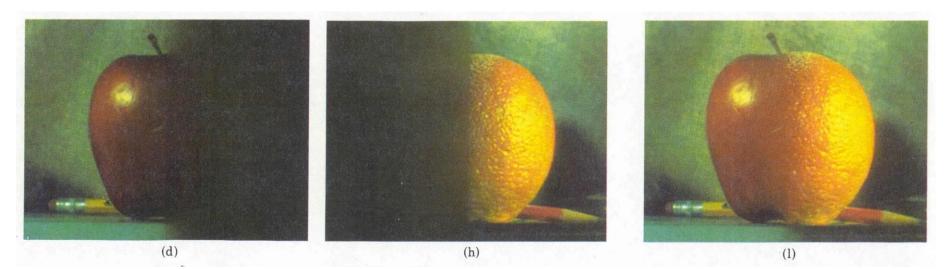
Left pyramid

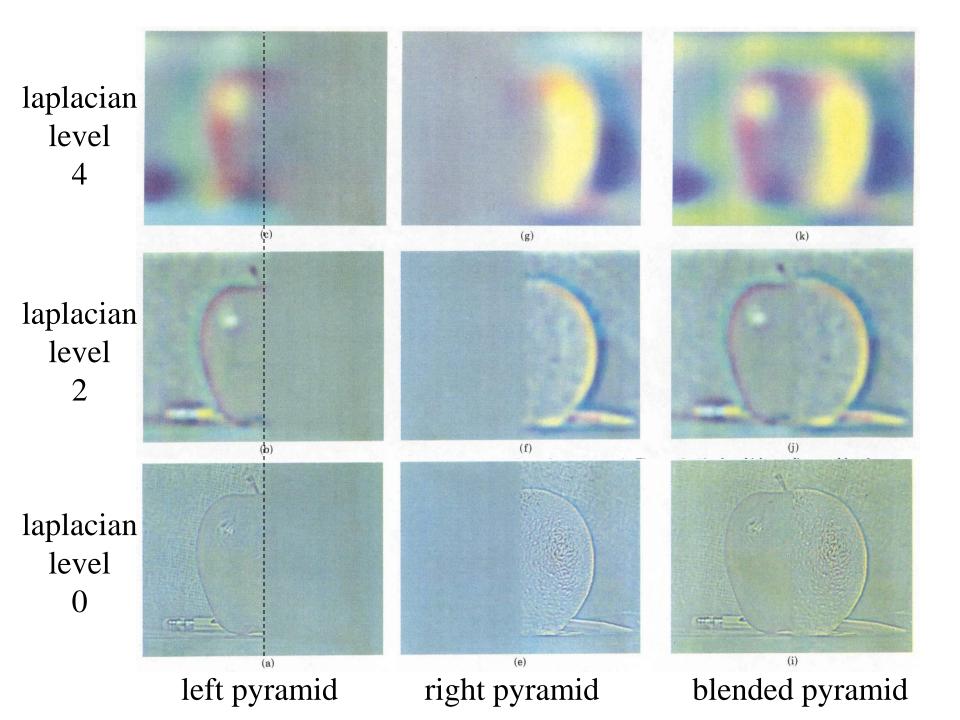
blend

Right pyramid

Pyramid Blending







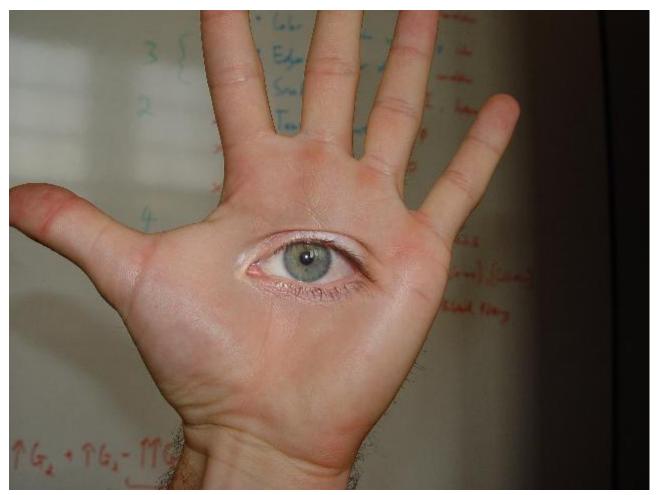
Blending Regions

Laplacian Pyramid: Blending

General Approach:

- 1. Build Laplacian pyramids *LA* and *LB* from images *A* and *B*
- 2. Build a Gaussian pyramid *GR* from selected region *R*
- 3. Form a combined pyramid *LS* from *LA* and *LB* using nodes of *GR* as weights:
 - LS(i,j) = GR(I,j,)*LA(I,j) + (1-GR(I,j))*LB(I,j)
- 4. Collapse the *LS* pyramid to get the final blended image

Horror Photo



© david dmartin (Boston College)

Results from this class (fall 2005)

© Chris Cameron

Simplification: Two-band Blending

Brown & Lowe, 2003

- Only use two bands -- high freq. and low freq. without downsampling
- Blends low freq. smoothly
- Blend high freq. with no smoothing: use binary alpha

2-band "Laplacian Stack" Blending

Low frequency ($\lambda > 2$ pixels)

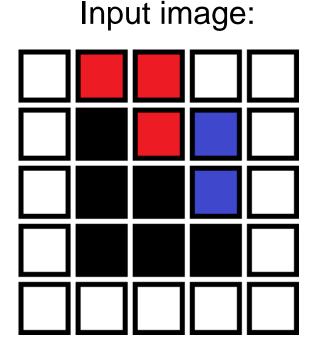
High frequency (λ < 2 pixels)

Linear Blending

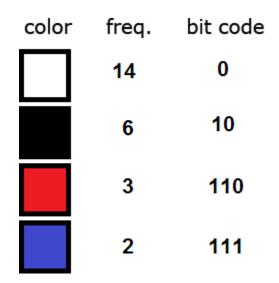
2-band Blending

Side note: Image Compression

Lossless Compression (e.g. Huffman coding)



Pixel code:

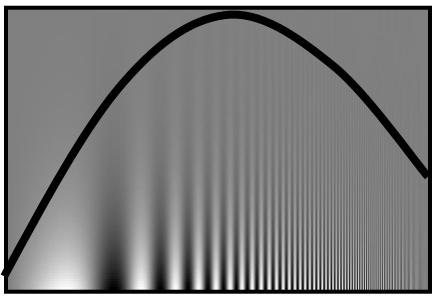


Pixel histogram:

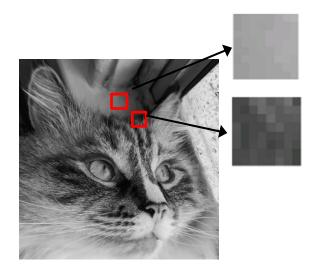
Compressed image: 0 110 110 0 0 0 10 110 111 0

https://www.print-driver.com/stories/huffman-coding-jpeg

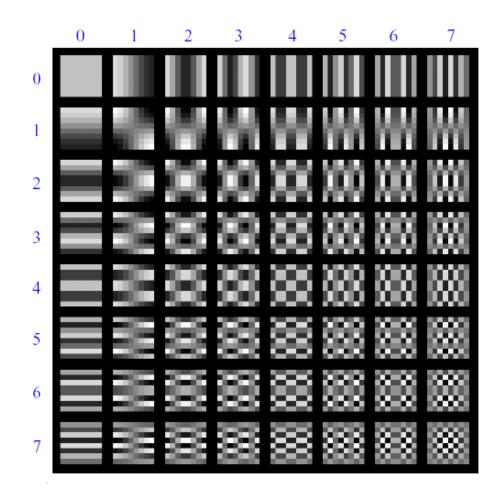
Lossless Compression not enough



Lossy Image Compression (JPEG)



cut up into 8x8 blocks

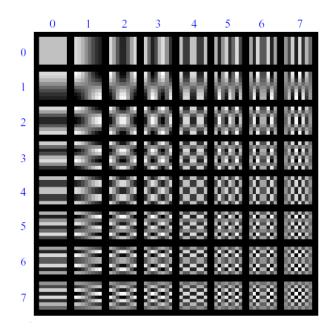


Block-based Discrete Cosine Transform (DCT)

Using DCT in JPEG

The first coefficient B(0,0) is the DC component, the average intensity

The top-left coeffs represent low frequencies, the bottom right – high frequencies



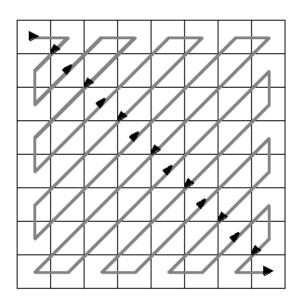


Image compression using DCT

Quantize

• More coarsely for high frequencies (tend to have smaller values anyway)

Quantization table

 $35 \ 55 \ 64 \ 81 \ 104 \ 113$

112

78 87 103 121 120

40

109

100

58 60

57 69

87 80

51

103

103

61

55

56

62

77

92

101

99

 $10 \ 16 \ 24$

 $12 \ 14 \ 19 \ 26$

 $13 \ 16 \ 24 \ 40$

98

95

12

24

64

92

• Many quantized high frequency values will be zero

Encode

• Can decode with inverse dct

Filte	r respo	onses	$\stackrel{u}{\longrightarrow}$							
G =	$\begin{bmatrix} -415.38 \\ 4.47 \\ -46.83 \\ -48.53 \\ 12.12 \\ -7.73 \\ -1.03 \\ -0.17 \end{bmatrix}$	$\begin{array}{r} -30.19 \\ -21.86 \\ 7.37 \\ 12.07 \\ -6.55 \\ 2.91 \\ 0.18 \\ 0.14 \end{array}$	$\begin{array}{r} -61.20 \\ -60.76 \\ 77.13 \\ 34.10 \\ -13.20 \\ 2.38 \\ 0.42 \\ -1.07 \end{array}$	$27.24 \\ 10.25 \\ -24.56 \\ -14.76 \\ -3.95 \\ -5.94 \\ -2.42 \\ -4.19$	$56.13 \\ 13.15 \\ -28.91 \\ -10.24 \\ -1.88 \\ -2.38 \\ -0.88 \\ -1.17$	$\begin{array}{r} -20.10 \\ -7.09 \\ 9.93 \\ 6.30 \\ 1.75 \\ 0.94 \\ -3.02 \\ -0.10 \end{array}$	$\begin{array}{r} -2.39 \\ -8.54 \\ 5.42 \\ 1.83 \\ -2.79 \\ 4.30 \\ 4.12 \\ 0.50 \end{array}$	$\begin{array}{c} 0.46 \\ 4.88 \\ -5.65 \\ 1.95 \\ 3.14 \\ 1.85 \\ -0.66 \\ 1.68 \end{array}$	$\left \begin{array}{c} \downarrow v \end{array} \right $	
Quantized values										
	В		$ \begin{array}{cccc} 0 & -2 & -2 \\ 3 & 1 \\ 3 & 1 \\ 1 & 0 \\ \end{array} $		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}$				

JPEG Compression Summary

Subsample color by factor of 2

- People have bad resolution for color
- Split into blocks (8x8, typically), subtract 128

For each block

- a. Compute DCT coefficients
- b. Coarsely quantize
 - Many high frequency components will become zero
- c. Encode (e.g., with Huffman coding)

Spatial dimension of color channels are reduced by 2 (lecture 2)!

http://en.wikipedia.org/wiki/YCbCr http://en.wikipedia.org/wiki/JPEG

Block size

- small block
 - faster
 - correlation exists between neighboring pixels
- large block
 - better compression in smooth regions
- It's 8x8 in standard JPEG

JPEG compression comparison

12k

89k

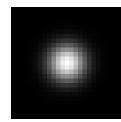
Review: Smoothing vs. derivative filters

Smoothing filters

- Gaussian: remove "high-frequency" components;
 "low-pass" filter
- Can the values of a smoothing filter be negative?
- What should the values sum to?
 - One: constant regions are not affected by the filter

Derivative filters

- Derivatives of Gaussian
- Can the values of a derivative filter be negative?
- What should the values sum to?
 - Zero: no response in constant regions
- High absolute value at points of high contrast

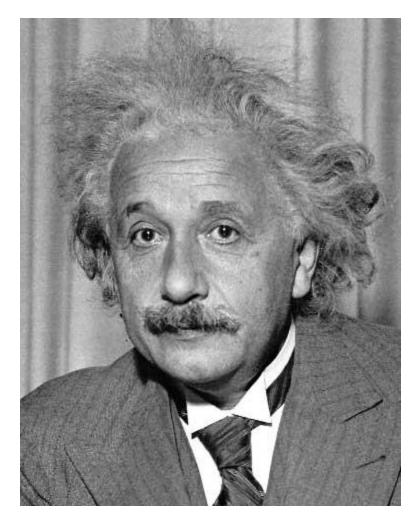


Template matching

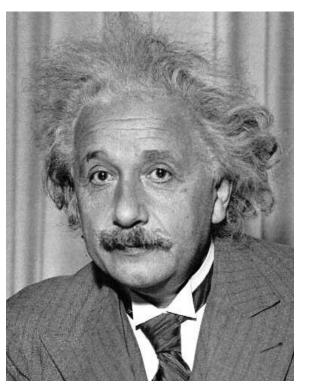
Goal: find in image

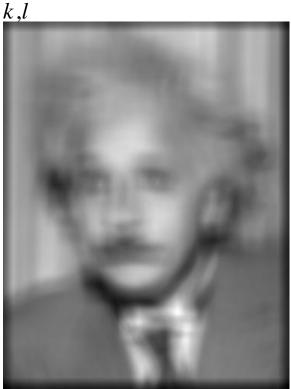
Main challenge: What is a good similarity or distance measure between two patches?

- Correlation
- Zero-mean correlation
- Sum Square Difference
- Normalized Cross Correlation



Goal: find in image Method 0: filter the image with eye patch $h[m,n] = \sum_{k} g[k,l] f[m+k,n+l]$





f = image g = filter

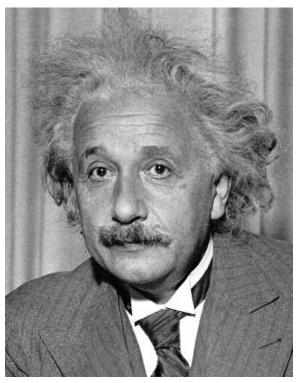
What went wrong?

Input

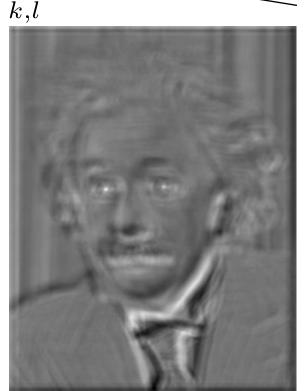
Filtered Image

Side by Derek Hoiem

Goal: find in image f = imageg = filterMethod 1: filter the image with zero-mean eye $h[m, n] = \sum (g[k, l] - \overline{g})(f[m + k, n + l])$

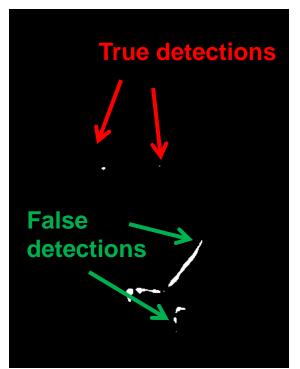


Input

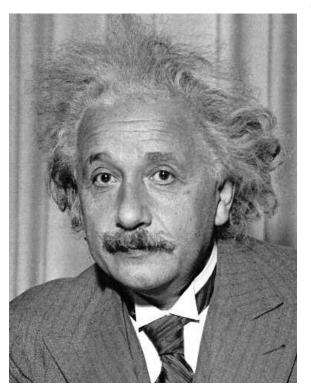


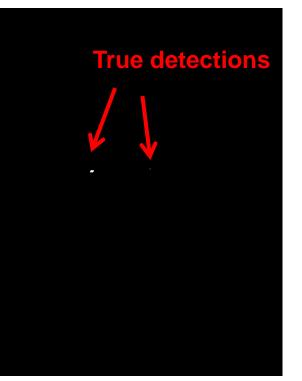
Filtered Image (scaled)

mean of g



Goal: find I in image Method 2: SSD (L2) $h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$





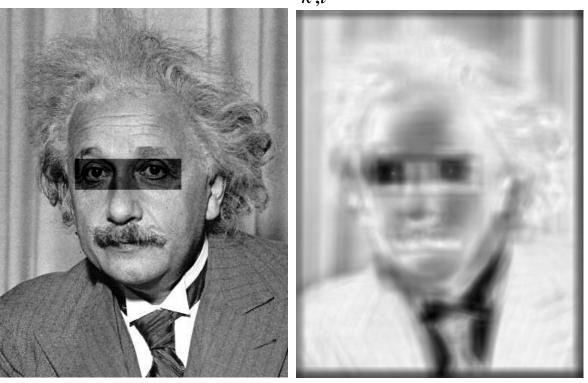
Input

1- sqrt(SSD)

Can SSD be implemented with linear filters?

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$

Goal: find in image What's the potential downside of SSD? Method 2: SSD $h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$



Side by Derek Hoiem

Input

1- sqrt(SSD)

Goal: find Similar Science Sci

$$h[m,n] = \frac{\sum_{k,l} (g[k,l] - \overline{g})(f[m+k,n+l] - \overline{f}_{m,n})}{\left(\sum_{k,l} (g[k,l] - \overline{g})^2 \sum_{k,l} (f[m+k,n+l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

Side by Derek Hoiem

Goal: find Similar image Method 3: Normalized cross-correlation

Input

Normalized X-Correlation

Goal: find Image In image Method 3: Normalized cross-correlation

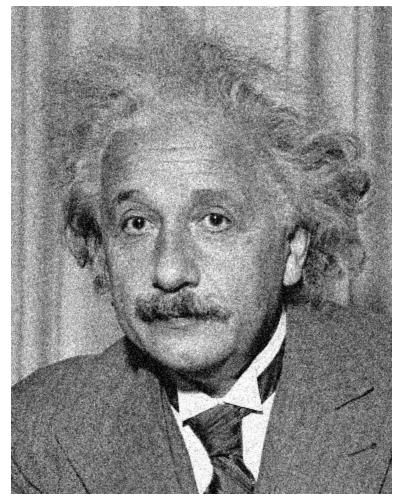
Input

Normalized X-Correlation

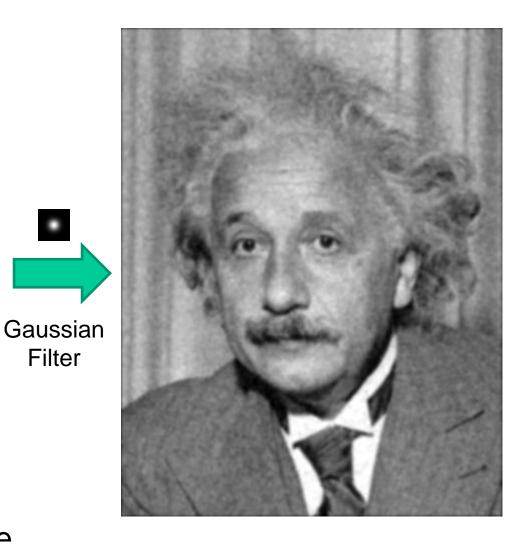
Q: What is the best method to use?

- A: Depends
- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, invariant to local average intensity and contrast

Denoising



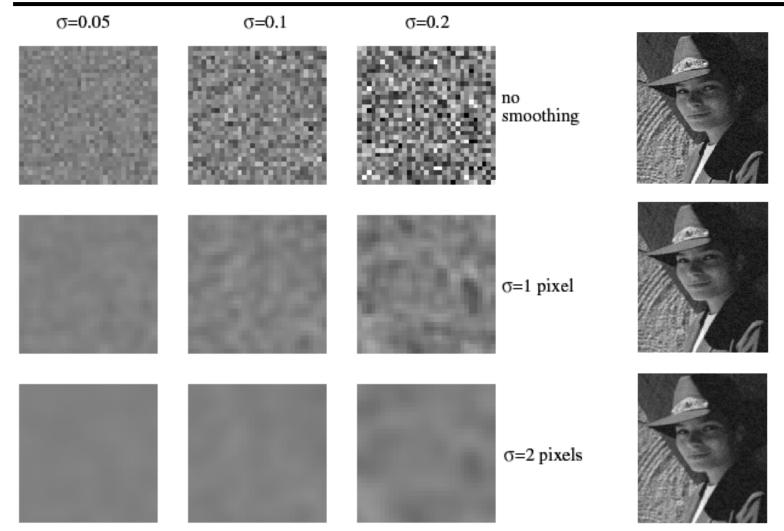
Additive Gaussian Noise



٠

Filter

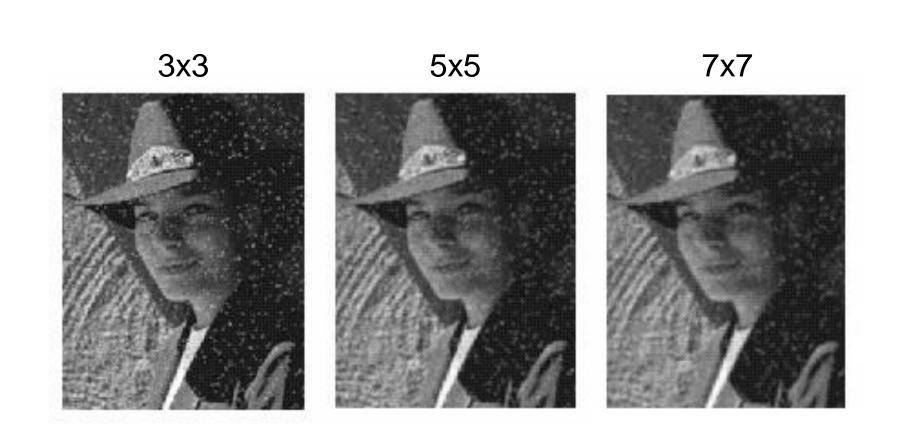
Reducing Gaussian noise



Smoothing with larger standard deviations suppresses noise, but also blurs the image

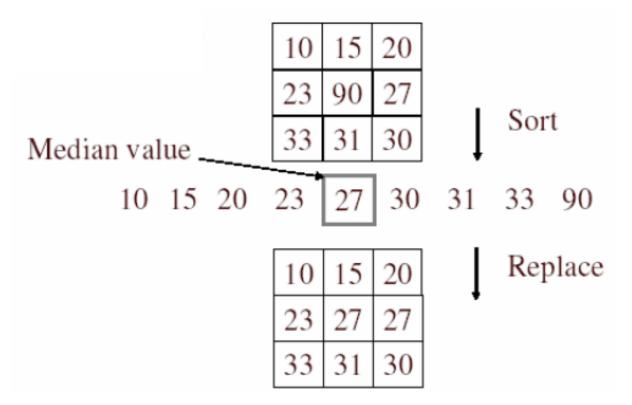
Source: S. Lazebnik

Reducing salt-and-pepper noise by Gaussian smoothing



Alternative idea: Median filtering

A **median filter** operates over a window by selecting the median intensity in the window

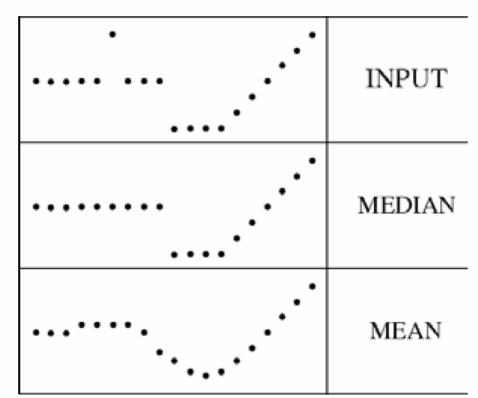


• Is median filtering linear?

Median filter

What advantage does median filtering have over Gaussian filtering?

Robustness to outliers

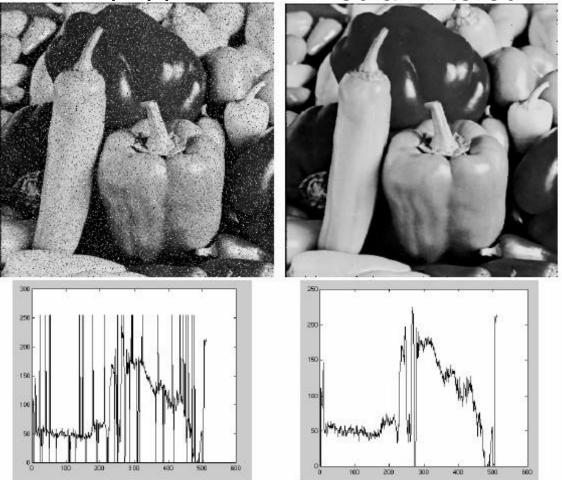


filters have width 5 :

Source: K. Grauman

Median filter

Salt-and-pepper noise Median filtered



MATLAB: medfilt2(image, [h w])

Source: M. Hebert

Median vs. Gaussian filtering

