Data-driven Methods: Faces

CS180: Intro to Computer Vision and Comp. Photo Angjoo Kanazawa and Alexei Efros, UC Berkeley, Fall 2023

Tips for Morphing \& Matting

Extract foreground first to avoid artifacts in the background

(c) $\alpha=0.0$

(f) $\alpha=0.6$

(d) $\alpha=0.2$

(g) $\alpha=0.8$

(e) $\alpha=0.4$

(h) $\alpha=1.0$

Other Issues

Beware of folding

- You are probably trying to do something 3D-ish

Morphing can be generalized into 3D

- If you have 3D data, that is!

Extrapolation can sometimes produce interesting effects

- Caricatures

Dynamic Scene ("Black or White", MJ)

http://www.youtube.com/watch?v=R4kLKv5gtxc

Today

From:

$$
\mathbf{q}=4 \mathbf{i}+3 \mathbf{j}=(4,3)
$$

To:

The Power of Averaging

8-hour exposure

© Atta Kim

Image Composites

Sir Francis
Galton
1822-1911

Multiple Individuals

Composite
[Galton, "Composite Portraits", Nature, 1878]

Average Images in Art

"60 passagers de $2 e$ classe du metro, entre 9h et 11h" (1985)
Krzysztof Pruszkowski

"Spherical type gasholders" (2004) Idris Khan

"100 Special Moments" by Jason Salavon

Little Leaguer

The Graduate

Kids with Santa

Why blurry?

Object-Centric Averages by Torralba (2001)

Manual Annotation and Alignment

Average Image

Slide by Jun-Yan Zhu

Computing Means

Two Requirements:

- Alignment of objects
- Objects must span a subspace

Useful concepts:

- Subpopulation means
- Deviations from the mean

Images as Vectors

Vector Mean: Importance of Alignment

How to align faces?

Shape Vector

Provides alignment!

Appearance Vectors vs. Shape Vectors

Slide by Kevin Karsch

Average Face

1. Warp to mean shape
2. Average pixels

Objects must span a subspace

Example

Does not span a subspace

Subpopulation means

Examples:

- Male vs. female
- Happy vs. said
- Angry Kids
- People wearing glasses
- Etc.
- http://www.faceresearch.org

Average kid

Average happy male

Average female

Average male

Average Women of the world

Average Men of the world

AUSTRIA

CAMBODIA

AFGHANISTAN

ENGLAND

ARGENTINA

ETHIOPIA

BURMA (MYANMAR)

FRANCE

GERMANY

IRAQ

GREECE

IRELAND

AFRICAN AMERICAN

Deviations from the mean

Deviations from the mean

Extrapolating faces

- We can imagine various meaningful directions.

Slide by Kevin Karsch

Manipulating faces

- How can we make a face look more female/male, young/old, happy/sad, etc.?
- http://www.faceresearch.org/demos/transform

Slide by Kevin Karsch

Manipulating Facial Appearance through Shape and Color

Duncan A. Rowland and David I. Perrett
St Andrews University
IEEE CG\&A, September 1995

Face Modeling

Compute average faces (color and shape)

Compute deviations between male and female (vector and color differences)

Changing gender

Deform shape and/or color of an input face in the direction of "more female"

Enhancing gender

more same original androgynous more opposite

Changing age

Face becomes
"rounder" and "more textured" and "grayer"

Back to the Subspace

Linear Subspace: convex combinations

Any new image X can be obtained as weighted sum of stored "basis" images.

$$
X=\sum_{i=1}^{m} a_{i} X_{i}
$$

Our old friend, change of basis! What are the new coordinates of X ?

The Morphable Face Model

The actual structure of a face is captured in the shape vector $\mathbf{S}=\left(x_{1}, y_{1}, x_{2}, \ldots, y_{n}\right)^{\top}$, containing the (x, y) coordinates of the n vertices of a face, and the appearance (texture) vector $\mathbf{T}=\left(R_{1}, G_{1}, B_{1}, R_{2}, \ldots, G_{n}\right.$, $\left.B_{n}\right)^{\top}$, containing the color values of the mean-warped face image.

Shape S

Appearance T

The Morphable face model

Again, assuming that we have \boldsymbol{m} such vector pairs in full correspondence, we can form new shapes $\mathbf{S}_{\text {model }}$ and new appearances $\mathbf{T}_{\text {model }}$ as:

$$
\begin{aligned}
& \mathbf{S}_{\text {model }}=\sum_{i=1}^{m} a_{i} \mathbf{S}_{i} \quad \mathbf{T}_{\text {model }}=\sum_{i=1}^{m} b_{i} \mathbf{T}_{i} \\
& s=\alpha_{1} \cdot(1)+\alpha_{2} \cdot(2)+\alpha_{3} \cdot \text { (1) }+\alpha_{4} \text {. } 1 \text { ? }+\ldots=\mathbf{S} \cdot \mathrm{a} \\
& t=\beta_{1} \cdot(\sqrt[5]{ })+\beta_{2} \cdot(\sqrt{2})+\beta_{3} \cdot()_{4} \cdot(\sqrt{ })+\ldots=\mathbf{T} \cdot \beta
\end{aligned}
$$

If number of basis faces \boldsymbol{m} is large enough to span the face subspace then:
Any new face can be represented as a pair of vectors
$\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)^{\top}$ and $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)^{\top}$!

Issues:

1. How many basis images is enough?
2. Which ones should they be?
3. What if some variations are more important than others?

- E.g. corners of mouth carry much more information than haircut

Need a way to obtain basis images automatically, in order of importance!

But what's important?

Principal Component Analysis

Given a point set $\left\{\overrightarrow{\mathbf{p}}_{j}\right\}_{j=1 \ldots P}$, in an M-dim space, PCA finds a basis such that

- coefficients of the point set in that basis are uncorrelated
- first $r<M$ basis vectors provide an approximate basis that minimizes the mean-squared-error (MSE) in the approximation (over all bases with dimension r)

PCA via Singular Value Decomposition

EigenFaces

First popular use of PCA on images was for modeling and recognition of faces [Kirby and Sirovich, 1990, Turk and Pentland, 1991]

- Collect a face ensemble
- Normalize for contrast, scale, \& orientation.
- Remove backgrounds
- Apply PCA \& choose the first N eigen-images that account for most of the variance of the/ data.

First 3 Shape Basis

Principal Component Analysis

Choosing subspace dimension $r:$

- look at decay of the eigenvalues as a function of r
- Larger r means lower expected error in the subspace data approximation

Using 3D Geometry: Blanz \& Vetter, 1999

Automated Matching

http://www.youtube.com/watch?v=irutZaYoQJo

With a nonlinear basis

EG3D, Chan et al. CVPR 2022

What are other linear things?

Body Shape

"Identity"

Individual Shape Variation

