Data-driven Methods: Faces

CS180: Intro to Computer Vision and Comp. Photo Angjoo Kanazawa and Alexei Efros, UC Berkeley, Fall 2023

Tips for Morphing & Matting

Extract foreground first to avoid artifacts in the background

Slide by Durand and Freeman $^{(f)\ \alpha\,=\,0.6}$

(g) $\alpha = 0.8$

(h) $\alpha = 1.0$

Other Issues

Beware of folding

• You are probably trying to do something 3D-ish

Morphing can be generalized into 3D

• If you have 3D data, that is!

Extrapolation can sometimes produce interesting effects

Caricatures

Dynamic Scene ("Black or White", MJ)

http://www.youtube.com/watch?v=R4kLKv5gtxc

Today

From:

Texture Extraction & Facial Expression

Cast Shadow

The Power of Averaging

8-hour exposure

© Atta Kim

Image Composites

Multiple Individuals

Composite

[Galton, "Composite Portraits", Nature, 1878]

Sir Francis Galton 1822-1911

Average Images in Art

"60 passagers de 2e classe du metro, entre 9h et 11h" (1985)
Krzysztof Pruszkowski

"Spherical type gasholders" (2004) Idris Khan

"100 Special Moments" by Jason Salavon

The Graduate

Newlyweds

Why

blurry?

Object-Centric Averages by Torralba (2001)

Manual Annotation and Alignment

Average Image

Slide by Jun-Yan Zhu

Two Requirements:

- Alignment of objects
- Objects must span a subspace

Useful concepts:

- Subpopulation means
- Deviations from the mean

Images as Vectors

n

] Г	1
	=	
m		
		n*m

Vector Mean: Importance of Alignment

How to align faces?

http://www2.imm.dtu.dk/~aam/datasets/datasets.html

Shape Vector

Provides alignment!

43

Appearance Vectors vs. Shape Vectors

Average Face

Warp to mean shape
 Average pixels

http://graphics.cs.cmu.edu/courses/15-463/2004_fall/www/handins/brh/final/

Objects must span a subspace

mean

Does not span a subspace

Subpopulation means

Examples:

- Male vs. female
- Happy vs. said
- Angry Kids
- People wearing glasses
- Etc.
- http://www.faceresearch.org

Average female

Average kid

Average happy male

Average male

Average Women of the world

CentralAfrican

Burmese

Cambodian

English

Filipino

Peruvian

Romanian

Russian

Samoan

South African

Average Men of the world

AUSTRIA

CAMBODIA

MONGOLIA

ARGENTINA

GERMANY

GREECE

ETHIOPIA

FRANCE

IRAQ

IRELAND

AFRICAN AMERICAN

PERU

Deviations from the mean

Mean X

 $\Delta X = X - \underline{X}$

Deviations from the mean

Extrapolating faces

• We can imagine various meaningful directions.

Slide by Kevin Karsch

Manipulating faces

- How can we make a face look more female/male, young/old, happy/sad, etc.?
- <u>http://www.faceresearch.org/demos/transform</u>

Slide by Kevin Karsch

Manipulating Facial Appearance through Shape and Color

Duncan A. Rowland and David I. Perrett St Andrews University IEEE CG&A, September 1995

Face Modeling

Compute *average* faces (color and shape)

Compute *deviations* between male and female (vector and color differences)

Changing gender

Deform shape and/or color of an input face in the direction of "more female"

original

color

shape

both

Enhancing gender

more same original androgynous more opposite

Changing age

Face becomes "rounder" and "more textured" and "grayer"

original

color

shape

both

Back to the Subspace

Linear Subspace: convex combinations

Any new image X can be obtained as weighted sum of stored "basis" images.

$$X = \sum_{i=1}^{m} a_i X_i$$

Our old friend, change of basis! What are the new coordinates of X? The actual structure of a face is captured in the shape vector $\mathbf{S} = (x_1, y_1, x_2, ..., y_n)^T$, containing the (x, y)coordinates of the n vertices of a face, and the appearance (texture) vector $\mathbf{T} = (R_1, G_1, B_1, R_2, ..., G_n, B_n)^T$, containing the color values of the mean-warped face image.

Appearance T

The Morphable face model

Again, assuming that we have m such vector pairs in full correspondence, we can form new shapes S_{model} and new appearances T_{model} as:

If number of basis faces *m* is large enough to span the face subspace then: <u>Any new</u> face can be represented as a pair of vectors $(\alpha_1, \alpha_2, ..., \alpha_m)^T$ and $(\beta_1, \beta_2, ..., \beta_m)^T$!

Issues:

- 1. How many basis images is enough?
- 2. Which ones should they be?
- 3. What if some variations are more important than others?
 - E.g. corners of mouth carry much more information than haircut

Need a way to obtain basis images automatically, in order of importance!

But what's important?

Principal Component Analysis

Given a point set $\{\vec{\mathbf{p}}_j\}_{j=1...P}$, in an *M*-dim space, PCA finds a basis such that

- coefficients of the point set in that basis are uncorrelated
- first *r* < *M* basis vectors provide an approximate basis that minimizes the mean-squared-error (MSE) in the approximation (over all bases with dimension *r*)

PCA via Singular Value Decomposition

http://graphics.cs.cmu.edu/courses/15-463/2004 fall/www/handins/brh/final/

EigenFaces

First popular use of PCA on images was for modeling and recognition of faces [Kirby and Sirovich, 1990, Turk and Pentland, 1991]

face

lighting

- Collect a face ensemble
- Normalize for contrast, scale, & orientation.
- Remove backgrounds
- Apply PCA & choose the first N eigen-images that account for most of the variance of the data. mean

First 3 Shape Basis

Mean appearance

http://graphics.cs.cmu.edu/courses/15-463/2004 fall/www/handins/brh/final/

Principal Component Analysis

Choosing subspace dimension

r:

- look at decay of the eigenvalues as a function of r
- Larger *r* means lower expected error in the subspace data approximation

Using 3D Geometry: Blanz & Vetter, 1999

Automated Matching

http://www.youtube.com/watch?v=jrutZaYoQJo

With a nonlinear basis

EG3D, Chan et al. CVPR 2022

What are other linear things?

Body Shape

"Identity"

Individual Shape Variation

[SCAPE: Anguelov et al., SIGGRAPH '05]

Pose changes (Articulation)

Figures courtesy of Michael Black