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Where we are

Volumetric 3D 
Representation 𝜽

Differentiable
Volumetric Rendering

Rendered Image: 
I’

“Training” Objective (aka Analysis-by-Synthesis):

Rendered Image: 
I’

Observed Image: 
Imin

!
− !

Now we need to render an image 
from this 3D representation in a 

differentiable manner



A Precursor: Multi-plane Images

Zou et al. Stereo Magnification, SIGGRAPH 2018



Alpha Blending

𝐼 =

(𝐶!, 𝛼!)

(𝐶", 𝛼")
for two image case, A and B, 
both partially transparent:

𝐶! 𝛼! + 𝐶" 𝛼"(1 − 𝛼!)

Also called front-to-back compositing or “over” operation

How much light is the previous layer letting through?

General D layer case:
𝐼 = $

!"#

$

𝐶!𝛼! ∏
%"#

!&#
(1 − 𝛼%)

layer 1

layer 2

layer D



Volumetric formulation for NeRF
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Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral



Volumetric formulation for NeRF

at a point on the ray r(𝑡) , we can query color 𝒄(𝑡) and density 𝜎 𝑡

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝

𝑡

𝐜 𝑡 , 𝜎(𝑡)

How to integrate all the info along the ray to get a color per ray? 



Idea: Expected Color
• Pose probabilistically.
• Each point on the ray has a probability to be the first “hit” : 𝑃[𝑓𝑖𝑟𝑠𝑡 ℎ𝑖𝑡 𝑎𝑡 𝑡]
• Color per ray = Expected value of color with this probability of first ”hit”

𝒄 𝒓 = $
!!

!"
𝑃 𝑓𝑖𝑟𝑠𝑡 ℎ𝑖𝑡 𝑎𝑡 𝑡 𝒄 𝑡 𝑑𝑡for a ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

≈ 5
!"#

$

𝑃 𝑓𝑖𝑟𝑠𝑡 ℎ𝑖𝑡 𝑎𝑡 𝑡 𝒄(𝑡)

≈ 5
!"#

$

𝑤!𝒄(𝑡)

𝑡!

𝐜!, 𝜎!
𝑡!

= ∑
%"&

'
𝑇%𝛼%𝐜% 𝑇! = ∏

"#$

!%$
(1 − 𝛼") 𝛼! = 1 − exp(−𝜎!𝛿!)where



for a ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

Differentiable Volumetric Rendering Formula

3D volume
𝑡;

𝑡!

Camera

𝐜 ≈ Σ
012

3
𝑤0𝐜0 = ∑

012

3
𝑇0𝛼0𝐜0

Ray

colors
weights

𝑇0 = ∏
412

052
(1 − 𝛼4)

𝛼0 = 1 − exp(−𝜎0𝛿0)

𝑡!"#

𝑡# 𝑇$

𝛼$

𝑡$

differentiable w.r.t. 𝐜, 𝜎
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3D volume

𝑡!

Camera

Ray

10

Visual intuition: rendering weights is
specific to a ray

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!
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3D volume

𝑡!

Camera

Ray

11

Rendering weights are not a 3D function —
depends on ray, because of tranmisttance!

Visual intuition: rendering weights is 
specific to a ray



What’s the point

• Remember, for each pixel or a ray we render a color with this 
formula based on the Volumetric 3D Representation
• We use this to supervise the 3D Representation (sigma, RGB 

volume)

Volumetric 3D 
Representation 𝜽

Differentiable
Volumetric Rendering

Rendered Image: 
I’

“Training” Objective (aka Analysis-by-Synthesis):

Rendered Image: 
I’

Observed Image: 
Imin

!
− *



Let’s derive this:

If a ray traveling through the scene hits 
a particle at distance 𝑡 along the ray, 
we return its color 𝐜(𝑡)

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝

𝑡

𝐜(𝑡)



What does it mean for a ray to “hit” the volume?

This notion is probabilistic: chance 
that ray hits a particle in a small 
interval around 𝑡 is 𝜎(𝑡)𝑑𝑡.
𝜎 is called the “volume density”

𝑃[ℎ𝑖𝑡 𝑎𝑡 𝑡] = 𝜎(𝑡)𝑑𝑡𝑡



Is it the first hit? 

To determine if 𝑡 is the first hit along the ray, need to know 𝑇(𝑡): the 
probability that the ray makes it through the volume up to 𝑡.

𝑇(𝑡) is called “transmittance”

𝑃[no hits before 𝑡] = 𝑇(𝑡)
𝑡



Define First Fit
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The product of these probabilities tells us how much you see 
the particles at 𝑡:
𝑃[8irst hit at 𝑡] = 𝑃[no hit before 𝑡]×𝑃[ℎ𝑖𝑡 𝑎𝑡 𝑡] = 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

𝑃[hit at 𝑡] = 𝜎(𝑡)𝑑𝑡
𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡

Also called Ray Termination
Let’s write T as a function of 𝜎 ! How? 



Calculating 𝑇 given 𝜎
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𝑃[no hit before 𝑡 + 𝑑𝑡] = 𝑃[no hit before 𝑡]×𝑃[no hit at 𝑡]

𝑃[hit at 𝑡] = 𝜎(𝑡)𝑑𝑡
𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡

𝑇(𝑡) (1 − 𝜎(𝑡)𝑑𝑡)𝑇(𝑡 + 𝑑𝑡)

We got: 𝑃 6irst hit at 𝑡 = 𝑃 no hit before 𝑡 ×𝑃 ℎ𝑖𝑡 𝑎𝑡 𝑡 = 𝑇 𝑡 𝜎 𝑡 𝑑𝑡

Now use a slightly different equation to relate 𝜎 and 𝑇:

Now we can solve for 𝑇 as a function of 𝜎



Solve for 𝑇 as a function of 𝜎
𝑃[no hit before 𝑡 + 𝑑𝑡] = 𝑃[no hit before 𝑡]×𝑃[no hit at 𝑡]

𝑇(𝑡) (1 − 𝜎(𝑡)𝑑𝑡)𝑇(𝑡 + 𝑑𝑡)

Taylor expansion ⇒ 𝑇(𝑡) + 𝑇%(𝑡)𝑑𝑡
Expanded Righthand side 

𝑇(𝑡 + 𝑑𝑡) = 𝑇(𝑡)(1 − 𝜎(𝑡)𝑑𝑡)

= 𝑇(𝑡) − 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

Rearrange⇒ &!(()
&(()

𝑑𝑡 = −𝜎(𝑡)𝑑𝑡

Integrate⇒ log𝑇(𝑡) = −∫("
( 𝜎(𝑠)𝑑𝑠

Integral of:

"
𝑓′(𝑥)
𝑓(𝑥) 𝑑𝑥 = log 𝑓(𝑥)

Exponentiate⇒ 𝑇(𝑡) = exp −∫("
( 𝜎(𝑠)𝑑𝑠

Solve the differential equation

Derivative of :



Finally, we can write the ray termination PDF
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Finally, we can write the probability that a ray terminates at 𝑡 as a function of only sigma

𝑃[8irst hit at 𝑡] = 𝑃[no hit before 𝑡]×𝑃[hit at 𝑡]

𝑃[ℎ𝑖𝑡 𝑎𝑡 𝑡] = 𝜎(𝑡)𝑑𝑡
𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡

= exp −∫("
( 𝜎(𝑠)𝑑𝑠 𝜎(𝑡)𝑑𝑡

= 𝑇(𝑡)𝜎(𝑡)𝑑𝑡



Finally, Expected Color along the ray

𝒄 𝒓 = I
&%

&&
𝑃 𝑓𝑖𝑟𝑠𝑡 ℎ𝑖𝑡 𝑎𝑡 𝑡 𝒄 𝑡 𝑑𝑡

= ∫!"
!#𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡

= ∫("
(#exp −∫("

( 𝜎(𝑠)𝑑𝑠 𝜎(𝑡)𝐜(𝑡)𝑑𝑡

Then, the expected color returned by the ray will be 

Note the nested integral!



Approximating the nested integral

Slide Credit: Ben Mildenhall

We use quadrature to approximate the nested integral, 



Approximating the nested integral

25

We use quadrature to approximate the nested integral, 
splitting the ray up into 𝑛 segments with endpoints 
{𝑡", 𝑡#, … , 𝑡$%"}

𝑡!

𝑡$

𝑡'($

𝑡!

Slide Credit: Ben Mildenhall



Approximating the nested integral
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We use quadrature to approximate the nested integral, 
splitting the ray up into 𝑛 segments with endpoints 
{𝑡", 𝑡#, … , 𝑡$%"}
with lengths 𝛿! = 𝑡!*+ − 𝑡!

𝑡!
𝛿$

𝑡$

𝑡'($

𝑡!

Slide Credit: Ben Mildenhall



Approximating the nested integral
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We assume volume density and 
color are roughly constant within 
each interval

𝑡!

𝐜!, 𝜎!
𝑡!

Slide Credit: Ben Mildenhall



Deriving quadrature estimate
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This allows us to break the outer integral 
into a sum of analytically tractable integrals

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!,+

-
∫(%
(%&#𝑇(𝑡)𝜎!𝐜!𝑑𝑡Expected color:

Slide Credit: Ben Mildenhall



Deriving quadrature estimate

29

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!,+

-
∫(%
(%&#𝑇(𝑡)𝜎!𝐜!𝑑𝑡

This allows us to break the outer integral 
into a sum of analytically tractable integrals

Expected color:

Slide Credit: Ben Mildenhall



Deriving quadrature estimate
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Caveat: piecewise constant density and color 
do not imply constant transmittance!

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!,+

-
∫(%
(%&#𝑇(𝑡)𝜎!𝐜!𝑑𝑡

Slide Credit: Ben Mildenhall



Deriving quadrature estimate

31

Caveat: piecewise constant density and color 
do not imply constant transmittance!

Important to account for how early part of a 
segment blocks later part when 𝜎& is high

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!,+

-
∫(%
(%&#𝑇(𝑡)𝜎!𝐜!𝑑𝑡

Slide Credit: Ben Mildenhall



Evaluating 𝑇 for piecewise constant 
density
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For 𝑡 ∈ [𝑡&, 𝑡&%"], 𝑇(𝑡) = exp −∫(#
(%𝜎!𝑑𝑠 exp −∫(%

(𝜎!𝑑𝑠

We need to evaluate at continuous 𝑡 values 
that can lie partway through an interval

𝑡

Slide Credit: Ben Mildenhall
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exp − ∑
-./

01/
𝜎-𝛿- = 𝑇0

For 𝑡 ∈ [𝑡&, 𝑡&%"], 𝑇(𝑡) = exp −∫(#
(%𝜎!𝑑𝑠 exp −∫(%

(𝜎!𝑑𝑠

“How much light is blocked by 
all previous segments?”

Evaluating 𝑇 for piecewise constant 
density

𝑡

Slide Credit: Ben Mildenhall



exp −𝜎&(𝑡 − 𝑡&)
“How much light is blocked partway 
through the current segment?”

Evaluating 𝑇 for piecewise constant 
density

For 𝑡 ∈ [𝑡&, 𝑡&%"], 𝑇(𝑡) = exp −∫(#
(%𝜎!𝑑𝑠 exp −∫(%

(𝜎!𝑑𝑠

𝑡

Slide Credit: Ben Mildenhall
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∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!,+

-
∫(%
(%&#𝑇(𝑡)𝜎!𝐜!𝑑𝑡

Deriving quadrature estimate

Slide Credit: Ben Mildenhall
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Substitute

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!,+

-
∫(%
(%&#𝑇(𝑡)𝜎!𝐜!𝑑𝑡

= ∑
!,+

-
𝑇!𝜎!𝐜!∫(%

(%&#exp −𝜎!(𝑡 − 𝑡!) 𝑑𝑡

Deriving quadrature estimate

Slide Credit: Ben Mildenhall
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∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
!,+

-
∫(%
(%&#𝑇(𝑡)𝜎!𝐜!𝑑𝑡

= ∑
!,+

-
𝑇!𝜎!𝐜!∫(%

(%&#exp −𝜎!(𝑡 − 𝑡!) 𝑑𝑡

Integrate = ∑
!,+

-
𝑇!𝜎!𝐜!

exp −𝜎!(𝑡!*+ − 𝑡!) − 1
−𝜎!

Deriving quadrature estimate

Integral of Exponential:

'exp −𝑎𝑥 𝑑𝑥 = −
1
𝑎
exp(−𝑎𝑥)

'
!!

!!"#
exp −𝜎(𝑡 − 𝑡") 𝑑𝑡 = −

1
𝜎
exp(−𝜎(𝑡 − 𝑡") | !!

!!"#

!"# $%!('!"#$'!) $!"# $%!('!$'!)
$%!

= !"# $%!('!"#$'!) $)
$%!

= ∑
!,+

-
𝑇!𝐜!(1 − exp(−𝜎!𝛿!))Cancel 𝜎&

Expected Color = ∑
&3"

$
𝑇&𝐜&(1 − exp(−𝜎&𝛿&))
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Putting it all together

Expected Color = ∑
&3"

$
𝑇&𝐜&(1 − exp(−𝜎&𝛿&))

𝑇0 = exp − ∑
-./

01/
𝜎-𝛿-where

Slide Credit: Ben Mildenhall
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Connection to alpha compositing

Expected Color = ∑
&3"

$
𝑇&𝐜&(1 − exp(−𝜎&𝛿&))

𝑇0 = exp − ∑
-./

01/
𝜎-𝛿-where

segment 
opacity 𝛼&

= ∏
43"

&5"
(1 − 𝛼4)

6
%

exp 𝑥% = exp(7
%

𝑥%)

𝛼% = 1 − exp(𝜎%𝛿%)
1 − 𝛼% = −exp(𝜎%𝛿%)

Expected Color = ∑
&3"

$
𝑇&𝐜&𝛼&



for a ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

Summary

3D volume
𝑡"

𝑡!

Camera

𝐜 ≈ Σ
012

3
𝑤0𝐜0 = ∑

012

3
𝑇0𝛼0𝐜0

Ray

colors
weights

𝑇0 = ∏
412

052
(1 − 𝛼4)

𝛼0 = 1 − exp(−𝜎0𝛿0)

𝑡!"#

𝑡# 𝑇$

𝛼$

𝑡$

differentiable w.r.t. 𝐜, 𝜎


