Neural Radiance Fields pt 3

made with
. . nerfstudio
CS180/280A: Intro to Computer Vision and Computational Photography

Lots of content from Noah Snavely and Ben Mildenhall, Pratul Srinivasan, and Matt Tancik from ECCV 2022 Tutorial on Neural Volumetric Rendering for Computer Vision

Angjoo Kanazawa and Alexei Efros
UC Berkeley Fall 2023

Class Choice Award Project 3

Winner:
Chloe Zhong
https://inst.eecs.berkeley.edu/~cs180/fa23/upload/files/proj3/cz hongx4

Tied $2^{\text {nd }}$ and $3^{\text {rd }}$: Irene Geng and Jai Singh
https://inst.eecs.berkeley.edu/~cs180/fa23/upload/files/proj3/irenegeng2/
https://inst.eecs.berkeley.edu/~cs180/fa23/upload/files/proj3/jai.s

Where we are

> Now we need to render an image
> from this 3D representation in a differentiable manner

$(\underbrace{x, y, z}, \underline{\text { Volumetric }} \boldsymbol{3}^{\mathbf{D}}(\underline{\mathrm{D}}, \underline{,}, \underline{\sim}$ $\underset{\substack{\text { samale } \\ \text { coinen }}}{\text { Reperesentation } \boldsymbol{\theta}} \boldsymbol{\theta}$

"Training" Objective (aka Analysis-by-Synthesis):

$$
\min _{\theta}\|\square-\square\|_{2}
$$

A Precursor: Multi-plane Images

Alpha Blending

for two image case, A and B, both partially transparent:

$$
\left(C_{a}, \alpha_{a}\right)
$$

$$
I=C_{a} \alpha_{a}+C_{b} \alpha_{b}\left(1-\alpha_{a}\right)
$$

How much light is the previous laver letting through?
General D layer case:

$$
I=\sum_{i=1}^{D} C_{i} \alpha_{i} \prod_{j=1}^{i-1}\left(1-\alpha_{j}\right)
$$

Volumetric formulation for NeRF

Scene is a cloud of tiny colored particles

Volumetric formulation for NeRF

at a point on the ray $\mathbf{r}(t)$, we can query color $\boldsymbol{c}(t)$ and density $\sigma(t)$ How to integrate all the info along the ray to get a color per ray?

Idea: Expected Color

- Pose probabilistically.
- Each point on the ray has a probability to be the first "hit" : P [first hit at t]
- Color per ray = Expected value of color with this probability of first "hit"

$$
\text { for a ray } \mathbf{r}(t)=\mathbf{o}+t \mathbf{d}: \quad \begin{aligned}
\boldsymbol{c}(\boldsymbol{r}) & =\int_{t_{0}}^{t_{1}} P[\text { first hit at } t] \boldsymbol{c}(t) d t \\
& \approx \sum_{t=0}^{T} P[\text { first hit at } t] \boldsymbol{c}(t) \\
& \approx \sum_{t=0}^{T} w_{t} \boldsymbol{c}(t) \quad \\
& =\sum_{i=1}^{n} T_{i} \alpha_{i} \mathbf{c}_{i} \quad \text { where } \quad T_{i}=\prod_{j=1}^{i-1}\left(1-\alpha_{j}\right) \quad \alpha_{i}=1-\exp \left(-\sigma_{i} \delta_{i}\right)
\end{aligned}
$$

Differentiable Volumetric Rendering Formula

 for a ray $\mathbf{r}(t)=\mathbf{o}+t \mathbf{d}$:

How much light is blocked earlier along ray:

$$
T_{i}=\prod_{j=1}^{i-1}\left(1-\alpha_{j}\right)
$$

Camera
How much light is contributed by ray segment i :

$$
\alpha_{i}=1-\exp \left(-\sigma_{i} \delta_{i}\right)
$$

Visual intuition: rendering weights is specific to a ray

Visual intuition: rendering weights is specific to a ray

Rendering weights are not a 3D function depends on ray, because of tranmisttance!

What's the point

- Remember, for each pixel or a ray we render a color with this formula based on the Volumetric 3D Representation
- We use this to supervise the 3D Representation (sigma, RGB volume)

"Training" Objective (aka Analysis-by-Synthesis):

Let's derive this:

What does it mean for a ray to "hit" the volume?

This notion is probabilistic: chance that ray hits a particle in a small interval around t is $\sigma(t) d t$. σ is called the "volume density"

Is it the first hit?

$P[$ no hits before $t]=T(t)$

To determine if t is the first hit along the ray, need to know $T(t)$: the probability that the ray makes it through the volume up to t.
$T(t)$ is called "transmittance"

Define First Fit

$P[$ no hits before $t]=T(t)$

The product of these probabilities tells us how much you see the particles at t :
$P[$ first hit at $t]=P[$ no hit before $t] \times P[$ hit at $t]=T(t) \sigma(t) d t$

Also called Ray Termination
Let's write T as a function of σ ! How?

Calculating T given σ

$P[$ no hits before $t]=T(t)$

We got: $P[$ first hit at $t]=P[$ no hit before $t] \times P[$ hit at $t]=T(t) \sigma(t) d t$
Now use a slightly different equation to relate σ and T :

Solve for T as a function of σ

Solve the differential equation

$$
T(t+d t)=T(t)(1-\sigma(t) d t)
$$

$$
\text { Taylor expansion } \Rightarrow T(t)+T^{\prime}(t) d t=T(t)-T(t) \sigma(t) d t \quad \downarrow \text { Expanded Righthand side }
$$

$$
\begin{aligned}
\text { Rearrange } \Rightarrow \frac{T^{\prime}(t)}{T(t)} d t & =-\sigma(t) d t \\
\text { Integrate } \Rightarrow \log T(t) & =-\int_{t_{0}}^{t} \sigma(s) d s \\
\text { Exponentiate } \Rightarrow T(t) & =\exp \left(-\int_{t_{0}}^{t} \sigma(s) d s\right)
\end{aligned}
$$

Integral of:

$$
\int \frac{f^{\prime}(x)}{f(x)} d x=\log f(x)
$$

Finally, we can write the ray termination PDF

Finally, we can write the probability that a ray terminates at t as a function of only sigma $P[$ first hit at $t]=P[$ no hit before $t] \times P[$ hit at $t]$

$$
\begin{aligned}
& =T(t) \sigma(t) d t \\
& =\exp \left(-\int_{t_{0}}^{t} \sigma(s) d s\right) \sigma(t) d t
\end{aligned}
$$

Finally, Expected Color along the ray

Then, the expected color returned by the ray will be

$$
\begin{aligned}
\boldsymbol{c}(\boldsymbol{r}) & =\int_{t_{0}}^{t_{1}} P[\text { first hit at } t] \boldsymbol{c}(t) d t \\
& =\int_{t_{0}}^{t_{1}} T(t) \sigma(t) \mathbf{c}(t) d t \\
& =\int_{t_{0}}^{t_{1}} \exp \left(-\int_{t_{0}}^{t} \sigma(s) d s\right) \sigma(t) \mathbf{c}(t) d t
\end{aligned}
$$

Note the nested integral!

Approximating the nested integral

We use quadrature to approximate the nested integral,

Approximating the nested integral

We use quadrature to approximate the nested integral, splitting the ray up into n segments with endpoints $\left\{t_{1}, t_{2}, \ldots, t_{n+1}\right\}$

Approximating the nested integral

We use quadrature to approximate the nested integral, splitting the ray up into n segments with endpoints $\left\{t_{1}, t_{2}, \ldots, t_{n+1}\right\}$ with lengths $\delta_{i}=t_{i+1}-t_{i}$

Approximating the nested integral

We assume volume density and color are roughly constant within each interval

Deriving quadrature estimate

Expected color: $\int T(t) \sigma(t) \mathbf{c}(t) d t \approx$

This allows us to break the outer inteqral

Deriving quadrature estimate

Expected color: $\int T(t) \sigma(t) \mathbf{c}(t) d t \approx \sum_{i=1}^{n} \int_{t_{i}}^{t_{i+1}} T(t) \sigma_{i} \mathbf{c}_{i} d t$
This allows us to break the outer integral into a sum of analytically tractable integrals

Deriving quadrature estimate

$$
\int T(t) \sigma(t) \mathbf{c}(t) d t \approx \sum_{i=1}^{n} \int_{t_{i}}^{t_{i} i} T(t) \sigma_{i} \mathbf{c}_{i} d t
$$

Caveat: piecewise constant density and color do not imply constant transmittance!

Deriving quadrature estimate

$$
\int T(t) \sigma(t) \mathbf{c}(t) d t \approx \sum_{i=1}^{n} \int_{t_{i}}^{t_{i}}{ }^{1} T(t) \sigma_{i} \mathbf{c}_{i} d t
$$

Caveat: piecewise constant density and color do not imply constant transmittance!

Important to account for how early part of a segment blocks later part when σ_{i} is high

Evaluating T for piecewise constant density

$$
\text { For } t \in\left[t_{i}, t_{i+1}\right], T(t)=\exp \left(-\int_{t_{1}}^{t_{i}} \sigma_{i} d s\right) \exp \left(-\int_{t_{i}}^{t} \sigma_{i} d s\right)
$$

We need to evaluate at continuous t values that can lie partway through an interval

Evaluating T for piecewise constant density

$$
\text { For } t \in\left[t_{i}, t_{i+1}\right], T(t)=\exp \left(-\int_{t_{1}}^{t_{i}} \sigma_{i} d s\right) \exp \left(-\int_{t_{i}}^{t} \sigma_{i} d s\right)
$$

$$
\exp \left(-\sum_{j=1}^{i-1} \sigma_{j} \delta_{j}\right)=T_{i} \text { "How much light is blocked by }
$$

Evaluating T for piecewise constant density

$$
\text { For } t \in\left[t_{i}, t_{i+1}\right], T(t)=\exp \left(-\int_{t_{1}}^{t_{i}} \sigma_{i} d s\right) \exp \left(-\int_{t_{i}}^{t} \sigma_{i} d s\right)
$$

"How much light is blocked partway through the current segment?"

$$
\exp \left(-\sigma_{i}\left(t-t_{i}\right)\right)
$$

Deriving quadrature estimate

$$
\int T(t) \sigma(t) \mathbf{c}(t) d t \approx \sum_{i=1}^{n} \int_{t_{i}}^{t_{i+1}} T(t) \sigma_{i} \mathbf{c}_{i} d t
$$

Deriving quadrature estimate

$$
\begin{aligned}
\int T(t) \sigma(t) \mathbf{c}(t) d t & \approx \sum_{i=1}^{n} \int_{t_{i}}^{t_{i+1}} T(t) \sigma_{i} \mathbf{c}_{i} d t \\
\text { Substitute } & =\sum_{i=1}^{n} T_{i} \sigma_{i} \mathbf{c}_{i} \int_{t_{i}}^{t_{i+1}} \exp \left(-\sigma_{i}\left(t-t_{i}\right)\right) d t
\end{aligned}
$$

Deriving quadrature estimate

$$
\begin{aligned}
\int T(t) \sigma(t) \mathbf{c}(t) d t & \approx \sum_{i=1}^{n} \int_{t_{i}}^{t_{i+1}} T(t) \sigma_{i} \mathbf{c}_{i} d t \\
& =\sum_{i=1}^{n} T_{i} \sigma_{i} \mathbf{c}_{i} \int_{t_{i}}^{t_{i+1}} \exp \left(-\sigma_{i}\left(t-t_{i}\right)\right) d t \\
\begin{array}{l}
\text { Integral of Exponential: } \\
\int \exp (-a x) d x=-\frac{1}{a} \exp (-a x)
\end{array} & \text { Integrate }=\sum_{i=1}^{n} T_{i} \sigma_{i} \mathbf{c}_{i} \frac{\exp \left(-\sigma_{i}\left(t_{i+1}-t_{i}\right)\right)-1}{-\sigma_{i}} \\
\int_{t_{i}}^{t_{i+1}} \exp \left(-\sigma\left(t-t_{i}\right)\right) d t=-\frac{1}{\sigma} \exp \left(-\sigma\left(t-t_{i}\right) t_{t_{i}}^{t_{i+1}}\right. & \text { Cancel } \sigma_{i}=\sum_{i=1}^{n} T_{i} \mathbf{c}_{i}\left(1-\exp \left(-\sigma_{i} \delta_{i}\right)\right) \\
\frac{\exp \left(-\sigma_{i}\left(t_{i+1}-t_{i}\right)\right)-\exp \left(-\sigma_{i}\left(t_{i}-t_{i}\right)\right)}{-\sigma_{i}}=\frac{\exp \left(-\sigma_{i}\left(t_{i+1}-t_{i}\right)\right)-1}{-\sigma_{i}} & \text { Expected Color }=\sum_{i=1}^{n} T_{i} \mathbf{c}_{i}\left(1-\exp \left(-\sigma_{i} \delta_{i}\right)\right)
\end{aligned}
$$

Putting it all together

$$
\text { where } \quad T_{i}=\exp \left(-\sum_{j=1}^{i-1} \sigma_{j} \delta_{j}\right)
$$

Connection to alpha compositing

$$
\begin{gathered}
\prod_{i} \exp \left(x_{i}\right)=\exp \left(\sum_{i} x_{i}\right) \\
\alpha_{i}=1-\exp \left(\sigma_{i} \delta_{i}\right) \\
1-\alpha_{i}=-\exp \left(\sigma_{i} \delta_{i}\right)
\end{gathered}
$$

$$
\begin{aligned}
T_{i} & =\exp \left(-\sum_{j=1}^{i-1} \sigma_{j} \delta_{j}\right) \\
& =\prod_{j=1}^{i-1}\left(1-\alpha_{j}\right)
\end{aligned}
$$

Summary

for a ray $\mathbf{r}(t)=\mathbf{o}+t \mathbf{d}$:

$$
\text { differentiable w.r.t. c, } \sigma
$$

$$
\mathbf{c} \stackrel{\sum_{i=1}^{n} w_{i} \mathbf{c}_{i}=\sum_{i=1}^{n} T_{i} \alpha_{i} \mathbf{c}_{i} \text { weights }}{\substack{\text { elors }}}
$$

How much light is blocked earlier along ray:

$$
T_{i}=\prod_{j=1}^{i-1}\left(1-\alpha_{j}\right)
$$

Camera
How much light is contributed by ray segment i :

$$
\alpha_{i}=1-\exp \left(-\sigma_{i} \delta_{i}\right)
$$

