Neural Radiance Fields pt 3

made with

CS180/280A: Intro to Computer Vision and Computational Photography

Lots of content from Noah Snavely and Ben Mildenhall, Pratul Srinivasan, and Matt Tancik from <u>ECCV 2022 Tutorial on Neural</u> <u>Volumetric Rendering for Computer Vision</u> Angjoo Kanazawa and Alexei Efros

UC Berkeley Fall 2023

Class Choice Award Project 3

Winner:

Chloe Zhong

https://inst.eecs.berkeley.edu/~cs180/fa23/upload/files/proj3/cz hongx4

Tied 2nd and 3rd: Irene Geng and Jai Singh <u>https://inst.eecs.berkeley.edu/~cs180/fa23/upload/files/proj3/irenegeng2/</u> <u>https://inst.eecs.berkeley.edu/~cs180/fa23/upload/files/proj3/jai.s</u>

Where we are Now we need to render an image from this 3D representation in a differentiable manner (x, y, z, Columetric 3D g, b, c) Viewing Representation of Output Viewing Representation of Output NLP 9 Byors, 256 channels

"Training" Objective (aka Analysis-by-Synthesis):

A Precursor: Multi-plane Images

Zou et al. Stereo Magnification, SIGGRAPH 2018

Also called front-to-back compositing or "over" operation

Alpha Blending

for two image case, A and B, both partially transparent:

$$I = C_a \alpha_a + C_b \alpha_b (1 - \alpha_a)$$

How much light is the previous laver letting through?

General D layer case:

$$: = \sum_{i=1}^{D} C_i \alpha_i \prod_{j=1}^{i-1} (1 - \alpha_j)$$

Volumetric formulation for NeRF

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral

Volumetric formulation for NeRF

at a point on the ray $\mathbf{r}(t)$, we can query color $\mathbf{c}(t)$ and density $\sigma(t)$

How to integrate all the info along the ray to get a color per ray?

Idea: Expected Color

- Pose probabilistically.
- Each point on the ray has a probability to be the first "hit" : *P*[*first hit at t*]
- Color per ray = Expected value of color with this probability of first "hit"

for a ray
$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$$
:

$$\mathbf{c}(\mathbf{r}) = \int_{t_0}^{t_1} P[first \ hit \ at \ t] \mathbf{c}(t) dt$$

$$\approx \sum_{t=0}^{T} P[first \ hit \ at \ t] \mathbf{c}(t)$$

$$\approx \sum_{t=0}^{T} w_t \mathbf{c}(t)$$

$$= \sum_{i=1}^{n} T_i \alpha_i \mathbf{c}_i \qquad \text{where} \quad T_i = \prod_{j=1}^{i-1} (1 - \alpha_j) \quad \alpha_i = 1 - \exp(-\sigma_i \delta_i)$$

Differentiable Volumetric Rendering Formula for a ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:

How much light is contributed by ray segment *i*:

 $\alpha_i = 1 - \exp(-\sigma_i \delta_i)$

Visual intuition: rendering weights is specific to a ray

Visual intuition: rendering weights is specific to a ray

Rendering weights are not a 3D function — depends on ray, because of tranmisttance!

What's the point

- Remember, for each pixel or a ray we render a color with this formula based on the Volumetric 3D Representation
- We use this to supervise the 3D Representation (sigma, RGB volume)

"Training" Objective (aka Analysis-by-Synthesis):

Let's derive this:

What does it mean for a ray to "hit" the volume?

This notion is probabilistic: chance that ray hits a particle in a small interval around t is $\sigma(t)dt$. σ is called the "volume density"

Is it the **first** hit?

To determine if t is the *first* hit along the ray, need to know T(t): **the** probability that the ray makes it through the volume up to t.

T(t) is called "transmittance"

Define First Fit

The product of these probabilities tells us how much you see the particles at t: $P[\text{first hit at } t] = P[\text{no hit before } t] \times P[\text{hit at } t] = T(t)\sigma(t)dt$

Also called Ray Termination Let's write T as a function of σ ! How?

We got: $P[\text{first hit at } t] = P[\text{no hit before } t] \times P[\text{hit at } t] = T(t)\sigma(t)dt$

Now use a slightly different equation to relate σ and T:

Now we can solve for T as a function of σ

Solve for T as a function of σ

Finally, we can write the ray termination PDF

Finally, we can write the probability that a ray terminates at t as a function of only sigma $P[\text{first hit at } t] = P[\text{no hit before } t] \times P[\text{hit at } t]$

$$= T(t)\sigma(t)dt$$
$$= \exp\left(-\int_{t_0}^t \sigma(s)ds\right)\sigma(t)dt$$

Finally, Expected Color along the ray

Then, the expected color returned by the ray will be

$$c(\mathbf{r}) = \int_{t_0}^{t_1} P[first \ hit \ at \ t] c(t) dt$$
$$= \int_{t_0}^{t_1} T(t) \sigma(t) \mathbf{c}(t) dt$$
$$= \int_{t_0}^{t_1} \exp\left(-\int_{t_0}^t \sigma(s) ds\right) \sigma(t) \mathbf{c}(t) dt$$

Note the nested integral!

We use quadrature to approximate the nested integral,

Approximating the nested integral

We use quadrature to approximate the nested integral, splitting the ray up into n segments with endpoints $\{t_1, t_2, \dots, t_{n+1}\}$

Approximating the nested integral

We use quadrature to approximate the nested integral, splitting the ray up into n segments with endpoints $\{t_1, t_2, \dots, t_{n+1}\}$ with lengths $\delta_i = t_{i+1} - t_i$

26 Slide Credit: Ben Mildenhall

Approximating the nested integral

We assume volume density and color are roughly constant within each interval

Expected color: $\int T(t)\sigma(t)\mathbf{c}(t)dt \approx$

This allows us to break the outer integral

Expected color:
$$\int T(t)\sigma(t)\mathbf{c}(t)dt \approx \sum_{i=1}^{n} \int_{t_i}^{t_{i+1}} T(t)\sigma_i \mathbf{c}_i dt$$

This allows us to break the outer integral into a sum of analytically tractable integrals

$$\int T(t)\sigma(t)\mathbf{c}(t)dt \approx \sum_{i=1}^{n} \int_{t_i}^{t_i} \mathbf{f}^{\mathsf{T}}T(t)\sigma_i \mathbf{c}_i dt$$

Caveat: piecewise constant density and color **do not** imply constant transmittance!

$$\int T(t)\sigma(t)\mathbf{c}(t)dt \approx \sum_{i=1}^{n} \int_{t_i}^{t_i} \mathbf{f}^{\mathsf{T}}(t)\sigma_i \mathbf{c}_i dt$$

Caveat: piecewise constant density and color **do not** imply constant transmittance!

Important to account for how early part of a segment blocks later part when σ_i is high

Evaluating T for piecewise constant density

For
$$t \in [t_i, t_{i+1}], T(t) = \exp\left(-\int_{t_1}^{t_i} \sigma_i ds\right) \exp\left(-\int_{t_i}^{t} \sigma_i ds\right)$$

We need to evaluate at continuous t values that can lie *partway through* an interval

Evaluating T for piecewise constant density

For $t \in$

$$[t_{i}, t_{i+1}], T(t) = \exp\left(-\int_{t_{1}}^{t_{i}} \sigma_{i} ds\right) \exp\left(-\int_{t_{i}}^{t} \sigma_{i} ds\right)$$
$$\exp\left(-\int_{j=1}^{i-1} \sigma_{j} \delta_{j}\right) = T_{i}$$
 "How much light is blocked by all previous segments?"

Evaluating T for piecewise constant density

For
$$t \in [t_i, t_{i+1}]$$
, $T(t) = \exp\left(-\int_{t_1}^{t_i} \sigma_i ds\right) \exp\left(-\int_{t_i}^{t} \sigma_i ds\right)$

"How much light is blocked partway through the current segment?"

$$\int T(t)\sigma(t)\mathbf{c}(t)dt \approx \sum_{i=1}^n \int_{t_i}^{t_{i+1}} T(t)\sigma_i \mathbf{c}_i dt$$

$$\int T(t)\sigma(t)\mathbf{c}(t)dt \approx \sum_{i=1}^{n} \int_{t_i}^{t_{i+1}} T(t)\sigma_i \mathbf{c}_i dt$$

Substitute
$$\sum_{i=1}^{n} T_i \sigma_i \mathbf{c}_i \int_{t_i}^{t_{i+1}} \exp(-\sigma_i (t - t_i)) dt$$

$$T(t)\sigma(t)\mathbf{c}(t)dt \approx \sum_{i=1}^{n} \int_{t_i}^{t_{i+1}} T(t)\sigma_i \mathbf{c}_i dt$$
$$= \sum_{i=1}^{n} T_i \sigma_i \mathbf{c}_i \int_{t_i}^{t_{i+1}} \exp(-\sigma_i (t-t_i)) dt$$

Integral of Exponential:

$$\int \exp(-ax) \, dx = -\frac{1}{a} \exp(-ax)$$

$$\int_{t_i}^{t_{i+1}} \exp(-\sigma(t - t_i)) dt = -\frac{1}{\sigma} \exp(-\sigma(t - t_i) | t_i^{t_{i+1}} t_i)$$

$$\frac{\exp(-\sigma_i(t_{i+1}-t_i))-\exp(-\sigma_i(t_i-t_i))}{-\sigma_i} = \frac{\exp(-\sigma_i(t_{i+1}-t_i))-1}{-\sigma_i}$$

Integrate =
$$\sum_{i=1}^{n} T_i \sigma_i \mathbf{c}_i \frac{\exp(-\sigma_i(t_{i+1} - t_i)) - 1}{-\sigma_i}$$

Cancel
$$\sigma_i = \sum_{i=1}^n T_i \mathbf{c}_i (1 - \exp(-\sigma_i \delta_i))$$

Expected Color =
$$\sum_{i=1}^{n} T_i \mathbf{c}_i (1 - \exp(-\sigma_i \delta_i))$$

Putting it all together

Expected Color =
$$\sum_{i=1}^{n} T_i \mathbf{c}_i (1 - \exp(-\sigma_i \delta_i))$$

where
$$T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$

Connection to alpha compositing

where
$$T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right)$$

 $i-1$

 $= \prod_{j=1} (1 - \alpha_j)$

$$\prod_{i} \exp(x_i) = \exp(\sum_{i} x_i)$$
$$\alpha_i = 1 - \exp(\sigma_i \delta_i)$$
$$1 - \alpha_i = -\exp(\sigma_i \delta_i)$$

 $\alpha_i = 1 - \exp(-\sigma_i \delta_i)$