# Structure-from-Motion (SfM) and Multi-View Stereo (MVS)



A lot of slides borrowed from Noah Snavely + Shree Nayar's YT series: First principals of Computer Vision

CS194: Intro to Computer Vision and Comp. Photo Kanazawa and Efros, UC Berkeley, Fall 2023

## Project 2 winners

- 1<sup>st</sup> Place -- Jeffrey Tan
  - <u>https://inst.eecs.berkeley.edu/~cs180/fa23/uploa</u> <u>d/files/proj2/tanjeffreyz02/</u>
- 2<sup>nd</sup> Place -- Mingxiao Wei
  - <u>https://inst.eecs.berkeley.edu/~cs180/fa23/uploa</u> <u>d/files/proj2/mingxiaowei/submission/</u>
- 3<sup>rd</sup> Place Nathalys Pham
  - <u>https://inst.eecs.berkeley.edu/~cs180/fa23/uploa</u> <u>d/files/proj2/ntpham/</u>

#### Recall: Camera calibration & triangulation

- Suppose we know 3D points and their matches in an image
  - How can we compute the **camera parameters**?
- Suppose we know camera parameters for multiple cameras, each observing a point

– How can we compute the **3D location** of that point?

# Recall this redundant structure, if you know 2 you get the other:



## Camera Calibration; aka Perspective-n-Point



## Stereo (w/2 cameras); aka Triangulation



## **Ultimate: Structure-from-Motion**



Start from nothing known (except maybe intrinsics), exploit the relationship to slowly get the right answer

## Photo Tourism

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," SIGGRAPH 2006



https://youtu.be/mTBPGuPLI5Y



## Structure from Motion (SfM)

- Given many images, how can we
  - a) figure out where they were all taken from?b) build a 3D model of the scene?



This is (roughly) the structure from motion problem

## Structure from motion





Reconstruction (side)



- Input: images with points in correspondence  $p_{i,j} = (u_{i,j}, v_{i,j})$
- Output
  - structure: 3D location  $\mathbf{x}_i$  for each point  $p_i$
  - motion: camera parameters  $\mathbf{R}_i$ ,  $\mathbf{t}_i$  possibly  $\mathbf{K}_i$
- Objective function: minimize *reprojection error*

## Large-scale structure from motion



Dubrovnik, Croatia. 4,619 images (out of an initial 57,845). Total reconstruction time: 23 hours Number of cores: 352

Building Rome in a Day, Agarwal et al. ICCV 2009

#### Large-scale structure from motion



Rome's Colosseum

## First step: Correspondence

• Feature detection and matching

#### Feature detection

#### Detect features using SIFT [Lowe, IJCV 2004]



#### Feature detection

#### Detect features using SIFT [Lowe, IJCV 2004]



#### Feature matching

Match features between each pair of images



## Feature matching

Refine matching using RANSAC to estimate fundamental matrix between each pair



## **Correspondence** estimation

Link up pairwise matches to form connected components of  $\bullet$ matches across several images



Image 1

Image 2

Image 3

## The story so far...



Images with feature correspondence

## The story so far...



- Next step:
  - Use structure from motion to solve for geometry (cameras and points)

• First: what are cameras and points?

## **Review: Points and cameras**

• Point: 3D position in space ( $\mathbf{X}_j$ )

- Camera ( $C_i$ ):
  - A 3D position ( $\mathbf{c}_i$ )
  - A 3D orientation ( $\mathbf{R}_i$ )
  - Intrinsic parameters
    (focal length, aspect ratio, ...)
  - 7 parameters (3+3+1) in total



## Structure from motion



## Structure from motion

• Minimize sum of squared reprojection errors:



- Minimizing this function is called *bundle adjustment* 
  - Optimized using non-linear least squares, e.g. Levenberg-Marquardt

## Solving structure from motion



Inputs: feature tracks

Outputs: 3D cameras and points

- Challenges:
  - Large number of parameters (1000's of cameras, millions of points)
  - Very non-linear objective function

## Solving structure from motion



Inputs: feature tracks

Outputs: 3D cameras and points

- Important tool: Bundle Adjustment [Triggs et al. '00]
  - Joint non-linear optimization of both cameras and points
  - Very powerful, elegant tool
- The bad news:
  - Starting from a random initialization is very likely to give the wrong answer
  - Difficult to initialize all the cameras at once

## Solving structure from motion



Inputs: feature tracks

Outputs: 3D cameras and points

- The good news:
  - Structure from motion with two cameras is (relatively) easy
  - Once we have an initial model, it's easy to add new cameras
- Idea:
  - Start with a small seed reconstruction, and grow

#### **Incremental SfM**



Automatically select an initial pair of images

## 1. Picking the initial pair

• We want a pair with many matches, but which has as large a baseline as possible





Iots of matches
 small baseline













## Incremental SfM: Algorithm

- 1. Pick a strong initial pair of images
- 2. Initialize the model using two-frame SfM
- 3. While there are connected images remaining:
  - a. Pick the image which sees the most existing 3D points
  - b. Estimate the pose of that camera
  - c. Triangulate any new points
  - d. Run bundle adjustment

## Visual Simultaneous Localization and Mapping (V-SLAM)

- Main differences with SfM:
  - Continuous visual input from sensor(s) over time
  - Gives rise to problems such as loop closure
  - Often the goal is to be online / real-time



Applications: Match Moving Or Motion tracking, solving for camera trajectory Integral for visual effects (VFX)

Why?



#### What if we want solid models?



Slide credit: Noah Snavely

#### Multi-view Stereo (Lots of calibrated images)

Input: calibrated images from several viewpoints (known camera: intrinsics and extrinsics)

Output: 3D Model



Figures by Carlos Hernandez

Slide credit: Noah Snavely

In general, conducted in a controlled environment with multi-camera setup that are all calibrated



Slide credit: Noah Snavely



#### **Multi-view Stereo**

**Problem formulation:** given several images of the same object or scene, compute a representation of its 3D shape



Slide credit: Noah Snavely

#### **Examples: Panoptic studio**



http://domedb.perception.cs.cmu.edu/



#### Evaluate the likelihood of geometry at a particular depth for a particular reference patch:



reference view

neighbor views









## In this manner, solve for a depth map over the whole reference view

#### Multi-view stereo: advantages

Can match windows using more than 1 other image, giving a **stronger match signal** 

If you have lots of potential images, can choose the best subset of images to match per reference image

Can reconstruct a depth map for each reference frame, and the merge into a **complete 3D model** 

#### Choosing the baseline



What's the optimal baseline?

- Too small: large depth error
- Too large: difficult search problem

Slide credit: Noah Snavely

# Single depth map often isn't enough



Source: N. Snavely

## Really want full coverage



## Idea: Combine many depth maps



Source: N. Snavely

#### Volumetric stereo



Goal: Assign RGB values to voxels in V photo-consistent with images

#### **Space Carving**



#### Space Carving Algorithm

- Initialize to a volume V containing the true scene
- Choose a voxel on the outside of the volume
- Project to visible input images
- Carve if not photo-consistent
- Repeat until convergence

K. N. Kutulakos and S. M. Seitz, <u>A Theory of Shape by Space Carving</u>, *ICCV* 1999

#### **Space Carving Results**



#### Input Image (1 of 45)



#### **Reconstruction**



#### Reconstruction



Reconstruction

Source: S. Seitz

#### **Space Carving Results**



#### Input Image (1 of 100)





Reconstruction

#### Tool for you: COLMAP

https://github.com/colmap/colmap

A general SfM + MVS pipeline