
CS182 Assignment 7 (Computational): Model Merging
Assigned Tuesday, March 13th

Due Tuesday, April 3rd, by 11:59pm
Model merging is a technique for building complex structured models of some process from data. The

idea behind model merging is to begin with a completely unstructured model and then to incrementally
modify it to reflect regularities in the data. In doing this, there is a tradeoff between the simplicity of the
model and how well it accounts for the data.

In this assignment you will apply a simplified version of the model merging algorithm to the task of
learning right-regular grammars.

1 Right-regular grammars

• A grammar is a tuple G = (Nonterminals, Terminals, Rules, StartSymbol), where Nonterminals or
Terminals are sets of symbols used to write the rules in Rules, and StartSymbol is a unique start
symbol from Nonterminals. Each nonterminal symbol can be expanded according to any rule in the
grammar that has that symbol on the left side. Terminal symbols cannot be expanded and appear only
on the right side of rules in the grammar.

• A right-regular grammar is one in which every rule looks either like

A → x1 x2 . . . xn B

or like
A → x1 x2 . . . xn

where the xi are terminal symbols, and A and B are nonterminal symbols. That is, each rule has one
nonterminal symbol on the left side; its expansion on the right side contains any number of terminal
symbols followed by at most one nonterminal symbol.

(Note: there may be 0 symbols on the right-hand side! The following is a valid rule:

A →

An example grammar G0 has Nonterminals = {S,Y}, Terminals = {the, dog, ran, away, down, the, street},
StartSymbol = S, and Rules consisting of the following:

S → the dog ran Y
Y → away
Y → down the street

G0 produces exactly two distinct sentences.

2 The model-merging algorithm

A simplified greedy version of the model-merging algorithm presented in class can be applied to learn
a right-regular grammar G that produces a given set of sentences Data. The algorithm has two main
procedures:
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• Data incorporation: Given a sentence from Data, add a set of rules to the grammar that generates this
sentence from the start symbol. For example, the sentence ‘the boy eats carrots’ would be incorporated
by adding the rule

S → the boy eats carrots

• Merging: Find and perform a merge of grammar rules that improves the grammar by decreasing its
cost; stop when no such merge can be found. The next two sections describe how merging works
(Section 3) and how the cost of a grammar is calculated (Section 4).

The algorithm proceeds as follows:

1. Initialize the grammar by incorporating each sentence of Data, as shown above.

2. Find the cost reduction of each potential merge using your prefix and suffix tree data structures.

3. If at least one of the merges decreases the cost of the grammar on the data, perform the one that
reduces the cost the most. If so, return to step 2. Otherwise, terminate.

3 Merging operations

We will incrementally improve the grammar by using two types of merge operations:

• A prefix merge operates on a set of rules with the same left side, and whose right sides share a common
prefix. For example, the rules

N → a b c d

N → a b c e X

N → a b c f g

would be replaced, in a prefix merge, by:

N → a b c N ′

N ′ → d

N ′ → e X

N ′ → f g

• A suffix merge operates on a set of rules whose right sides share a common suffix. For example, the
rules

N1 → a b c d e

N2 → f c d e

would be replaced, in a suffix merge, by:

N1 → a b N ′

N2 → f N ′

N ′ → c d e
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4 Calculating the effect of merging

The full-fledged Bayesian version of the model-merging algorithm is based on maximizing the posterior
probability of the model given the data. In this assignment, however, we use a simpler cost function, which
we attempt to minimize. Since we take a greedy approach to model merging, any merge that decreases the
cost is accepted.

The cost of a grammar G given data D is defined as:

c(G) = αs(G) + d(G, D)

Here is an explanation of the terms in this function:

• s(G) denotes the size of the grammar, and is equal to the number of symbols (i.e., terminals plus
nonterminals) occurring on the right side of rules in the grammar, counting repeats. So, for example,
the size of the simple grammar G0 from Section 1 would be 8.

• d(G, D) denotes the total derivation length of the data given this grammar, which is a reflection of how
well the model accounts for the data. The derivation length of a sentence is defined to be the number
of rules that have to be applied to the start symbol S to produce the sentence. The total derivation
length of the data is the sum of the derivation lengths of all the sentences.

• α is a constant indicating the importance of the grammar size (relative to the total derivation length)
and can be seen as controlling the algorithm’s tendency to generalize. (A smaller grammar tends to
generalize better to new examples, and a larger α leads to a greater cost being associated with large
grammars.)

One of the good things about this cost function is that it allows us to efficiently calculate the effect of
different merges without actually applying them and reparsing the data each time.

Affix trees

Affix trees (prefix and suffix trees) are data structures that make the cost change calculation much easier
and more efficient. The idea is that a prefix tree has nodes that represent the beginning of a rule, and its
leaves are the actual rules. Each node represents the first few symbols of a rule; some nodes represent full
rules, while others only represent the beginnings of rules. For instance, if we have the rules S → abN ,
S → ab, and S → ac, then we would construct the following prefix tree:

The advantage of this representation is that it allows us to easily compute both the potential merge
points and the cost of the merge. The first part is easy: any node of the tree (excluding the root and leaves)
is a potential merge point, where this prefix becomes its own rule, with a variable at the end of the rule that
can expand into the children of this node.
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The second part, that costs are easy to compute, is a bit harder to see. Suppose that at each node, we
note down the number of rules that start with this prefix and the total number of times those rules are
used. Then, let’s work with a particular node, with a prefix length of k, containing m rules. We will want
to store in the node both the prefix and the set of rules that start with that prefix. By accessing the objects
representing those rules, we can find out that they are each li long and used ri times (where i is the number
of the rule).

We can calculate how much the grammar cost changes if we perform a particular merge, and you are
asked below to do this. We can calculate the cost of a merge from the relevant rules, and we can store the
relevant rules in each node of the affix tree, so the result is that we can calculate the optimal merge just by
looking at all the nodes in the affix trees (both the forward and backward ones).

Of course, the same trick can be done the other way around; it works exactly the same way, except that
we arrange our tree by the ENDINGS of rules, rather than their beginnings. This is done so that we can
extract the merges that come at the end of rules, just as the previous data structure allowed us to extract the
merges at the beginnings of rules. (In suffix merges, we can merge together rules with different left-hand
sides, so to make some of the code work the same for both prefix and suffix trees, we start out the suffix
tree with a dummy symbol, “DUMMY”.)

For example, with the rules S → abN , S → ab, and N → ab, we would have the following suffix tree:

Symbol transformations

One important thing that happens when using this grammar merging technique is that sometimes we find
that two symbols are equivalent. That is, sometimes we find rules that look like this:

X → Y

These rules only add to the cost of the grammar, so we want to remove them. This not only makes for
smaller grammars, but it also generalizes the grammar, making a more expressive language! For instance,
by merging symbols we might learn that all prepositional phrases have a similar structure, whether they
come at the beginning of a sentences or at the end.

So, after performing any merge, you should check through the new grammar and look for rules like
X → Y . When you find one, you should go through every rule in the grammar, substituting in X whenever
you find a Y .

You can’t say we didn’t warn you

You may be graded on the quality of your code! Please include reasonable comments. Methods should
have descriptions, and complex methods should have some internal comments. It makes your code much
easier to read.
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Problem 1. Cost change for prefix merges

Consider the set of rules

N → x1 x2 . . . xk y11 y12 . . . y1l1

N → x1 x2 . . . xk y21 y22 . . . y2l2

. . .

N → x1 x2 . . . xk ym1 ym2 . . . ymlm

(Don’t be put off by the notation — it’s just a precise way of expressing that these m rules share a
common prefix of length k, followed by strings of varying length li.)

(a) Using this notation, write down the new rules that would result from applying a prefix merge.

(b) Calculate the change in size resulting from this merge (your answer should depend on k and m but not
on the li).

(c) Assume now that the ith rule in the original grammar was used ri times when parsing the data. Calcu-
late the number of times each rule in the modified grammar would be used.

(d) Use the result of part (c) to calculate the change in the total derivation length that would result from
this merge.

(e) Show that the total change in cost is α(k + 1−mk) +
∑m

i=1 ri.

Problem 2. Cost change for suffix merges

We can do the same thing for suffix merges. Consider the rules

N1 → y11 y12 . . . y1l1 x1 x2 . . . xk

N2 → y21 y22 . . . y2l2 x1 x2 . . . xk

. . .

Nm → ym1 ym2 . . . ymlm x1 x2 . . . xk

Perform a similar analysis as in the previous problem and show that the change in cost after applying a
suffix merge to these rules is α(m + k −mk) +

∑m
i=1 ri.

Problem 3. Implementing the model-merging algorithm

Use the skeleton code as the guide for implementation. (You must have a ModelMerge.main() method
which can take in the arguments listed in the ModelMerge class comments; a basic one is modifiable. Also,
to make grading easier, you should use MergeOutput.printMerge() to output each merge you actually per-
form. Everything else is modifiable, though we don’t recommend deviating too far from the template.) Use
your implementation to learn a grammar for a sample corpus. You may use the example data provided on
the course website, or you may construct your own dataset.

To ease and speed grading, we are looking to force all correct solutions to induce the same grammar for
a given ordered set of input. To do this, we have given you a tie-breaking method in the Merge class. Please
use it when there is a tie for the best merge.
(a) Briefly describe your overall design, noting especially any modifications to the suggested classes.
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(b) Experiment with several different values of α in the cost function. Give a qualitative description of the
differences in the results they produce.

(c) Describe your Grammar.performMerge(Merge m) method. What special cases did you encounter? Why
did it get complicated?

What to submit

• all your code

• a test run on some small examples that shows your algorithm performing merges and decreasing the
grammar cost, in test.txt

• answers to the questions in this handout, in answers.txt

Submit all of the above electronically according to the standard procedures.
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