Inductive and statistical learning of formal grammars

Pierre Dupont

pdupont@info.ucl.ac.be
Outline

• Grammar induction definition
• Learning paradigms
• DFA learning from positive and negative examples
• RPNI algorithm
• Probabilistic DFA learning
• Application to a natural language task
• Links with Markov models
• Smoothing issues
• Related problems and future work
Machine Learning

Goal: to give the learning ability to a machine

Design programs the performance of which improves over time

Inductive learning is a particular instance of machine learning

- Goal: to find a general law from examples
- Subproblem of theoretical computer science, artificial intelligence or pattern recognition
Grammar Induction or Grammatical Inference

Grammar induction is a particular case of inductive learning.

The general law is represented by a *formal grammar* or an equivalent machine.

The set of examples, known as *positive sample*, is usually made of *strings* or *sequences* over a specific *alphabet*.

A *negative sample*, i.e. a set of strings not belonging to the target language, can sometimes help the induction process.

Diagram:

- **Data:**
 - aaabbb
 - ab

- **Induction**

- **Grammar**:
 - \(S \rightarrow aSb \)
 - \(S \rightarrow \lambda \)
Examples

• Natural language sentence
• Speech
• Chronological series
• Successive actions of a WEB user
• Successive moves during a chess game
• A musical piece
• A program
• A form characterized by a chain code
• A biological sequence (DNA, proteins, . . .)
Pattern Recognition

8dC: 000077766676666555545444443211000710112344543311001234454311
Chromosome classification

String of Primitives

"=====CDFDCBBBBBBBA==bcdc==DGFB=bccb== ==cffc=CCC==cdb==BCB==dfdcb=====

grey dens. derivative

position along median axis

Chromosome 2a

Centromere
A modeling hypothesis

- Find G as close as possible to G_0

- The induction process does \textit{not} prove the existence of G_0

 It is a \textit{modeling hypothesis}
• Grammar induction definition
• **Learning paradigms**
• DFA learning from positive and negative examples
• RPNI algorithm
• Probabilistic DFA learning
• Application to a natural language task
• Links with Markov models
• Smoothing issues
• Related problems and future work
Learning paradigms

How to characterize learning?

- which concept classes can or cannot be learned?
- what is a good example?
- is it possible to learn in polynomial time?
Identification in the limit

- convergence in \textit{finite time} to G^*

- G^* is a representation of $L(G_0)$ (\textit{exact learning})
PAC Learning

- convergence to G^*

- G^* is *close enough* to G_0 *with high probability*

 \Rightarrow *Probably Approximately Correct learning*

- *polynomial* time complexity
Identification in the limit: good and bad news

The bad one…

Theorem 1. No *superfinite* class of languages is identifiable in the limit from *positive data only*

The good one…

Theorem 2. Any *admissible* class of languages is identifiable in the limit from *positive and negative data*
Other learnability results

• Identification in the limit in \textit{polynomial time}
 – DFAs cannot be \textit{efficiently} identified in the limit
 – unless we can ask \textit{equivalence and membership queries} to an oracle

• PAC learning
 – DFAs are not PAC learnable (under some cryptographic limitation assumption)
 – unless we can ask membership queries to an oracle
• PAC learning with \textit{simple examples}, i.e. examples drawn according to the conditional Solomonoff-Levin distribution

\[P_c(x) = \lambda_c 2^{-K(x|c)} \]

\(K(x|c) \) denotes the Kolmogorov complexity of \(x \) given a representation \(c \) of the concept to be learned

– regular languages are \textit{PACS learnable} with positive examples only
– but Kolmogorov complexity is \textit{not computable}!
Cognitive relevance of learning paradigms

A *largely unsolved* question

Learning paradigms seem irrelevant to model human learning:

- Gold’s identification in the limit framework has been criticized as *children* seem to *learn* natural language *without negative examples*
- All learning models assume a *known representation class*
- Some learnability results are based on *enumeration*
However learning models show that:

- an oracle can help

- some examples are useless, others are good: characteristic samples \iff typical examples

- learning well is learning efficiently

- example frequency matters

- good examples are simple examples \iff cognitive economy
• Grammar induction definition
• Learning paradigms
• **DFA learning from positive and negative examples**
• RPNI algorithm
• Probabilistic DFA learning
• Application to a natural language task
• Links with Markov models
• Smoothing issues
• Related problems and future work
Regular Inference from Positive and Negative Data

Additional hypothesis: the underlying theory is a regular grammar or, equivalently, a finite state automaton

Property 1. Any regular language has a canonical automaton $A(L)$ which is deterministic and minimal (minimal DFA)

Example : $L = (ba^*a)^*$

![Diagram of a finite state automaton](image-url)
A few definitions

Definition 1. A positive sample S_+ is *structurally complete* with respect to an automaton A if, when generating S_+ from A:

- every transition of A is used at least one
- every final state is used as accepting state of at least one string

Example: $\{ba, baa, baba, \lambda\}$
Merging is fun

- Merging \Leftrightarrow definition of a partition π on the set of states
 Example: $\{\{0,1\}, \{2\}\}$

- If $A_2 = A_1/\pi$ then $L(A_1) \subseteq L(A_2)$: merging states \Leftrightarrow generalize language
A theorem

The positive data can be represented by a **prefix tree acceptor** (PTA)

Example : \{aa, abba, baa\}

Theorem 3. *If the positive sample is structurally complete with respect to a canonical automaton* $A(L_0)$ *then there exists a partition* π *of the state set of* PTA *such that* $PTA/\pi = A(L_0)$
We observe some positive and negative data

The positive sample S_+ comes from a regular language L_0

The positive sample is assumed to be structurally complete with respect to the canonical automaton $A(L_0)$ of the target language L_0 (Not an additional hypothesis but a way to restrict the search to reasonable generalizations!)

We build the Prefix Tree Acceptor of S_+. By construction $L(PTA) = S_+$

Merging states \Leftrightarrow generalize S_+

The negative sample S_- helps to control over-generalization

Note: finding the minimal DFA consistent with S_+, S_- is NP-complete!
Bayesian learning

Find a model \(\hat{M} \) which maximizes the likelihood of the data \(P(X|M) \) and the prior probability of the model \(P(M) \):

\[
\hat{M} = \arg\max_M P(X|M).P(M)
\]

PPTA maximizes the data likelihood

A smaller model (number of states) is a priori assumed more likely
Links with Markov chains

A subclass of regular languages: the \textit{k-testable languages in the strict sense}

A k-TSS language is generated by an automaton such that all subsequences sharing the same last $k-1$ symbols lead to the same state.

\[\hat{p}(a|bb) = \frac{C(bba)}{C(bb)} \]

A probabilistic k-TSS language is equivalent to a $k-1$ order Markov chain.

There exists probabilistic regular languages \textit{not reducible} to Markov chains \textit{of any finite order}.
Probabilistic non-deterministic automata (PNFA), with *no end-of-string probabilities*, are equivalent to Hidden Markov Models (HMMs)
The smoothing problem

A probabilistic DFA defines a *probability distribution* over a set of strings.

Some strings are not observed on the training sample but they could be observed ⇒ their probability should be strictly positive.

The smoothing problem: how to assign a *reasonable probability* to (yet) unseen random events?

Highly optimized smoothing techniques exist for *Markov chains*.

How to *adapt* these techniques to more general *probabilistic automata*?
Related problems and approaches

I did not talk about

- other induction problems (*NFA, CFG, tree grammars, ...*)
- **heuristic approaches** as neural nets or genetic algorithms
- how to use *prior knowledge*
- **smoothing techniques**
- how to parse natural language without a grammars (*decision trees*)
- how to learn *transducers*
- **benchmarks, applications**