Week 8
Computational Level
Computational level

- Actions
 - hierarchical
 - goal-oriented
- Representations
 - Petri Nets
- If we have time
 - Grammars
Actions

• Hierarchy present in humans
 – e.g. reflexes
 – plans are usually hierarchical

• Rod Brooks
 – hierarchical action system
 – goal-oriented
 – different levels and components interact

• e.g. exploring behavior versus safety behavior
X-Schemas and Petri Nets

- Petri nets
 - Finite State Machines – but better!
 - Places
 - hold tokens
 - have semantic meaning
 - Transitions
 - can be enabled
 - can fire
 - consume tokens at inputs
Petri Nets

• Asynchronous
 – any enabled transition can fire
 – or not fire
 – so we reason about what states are possible

• Analysis
 – determine what states are possible
 – determine how many times a transition might fire
 – determine whether deadlock is possible
X-Schemas

• Add several things
 – timed
 – stochastic
 – inhibitory arcs
 – enabling arcs
Stochastic petri nets

Diagram:
- Place 1
- Transition t1
- Place 0
- Transition t2
- Place 2
Stochastic petri nets

• Random timing of transition firing
 – exponential distribution
 – gives rise to random choice of which transition will fire
 – $P(\text{transition fires in the next tiny time} | \text{enabled}) = f(\text{transition})$
 – Then $P(\text{transition fires next} | \text{enabled}) = f(\text{transition}) / \text{sum}(f(\text{enabled transitions}))$
Stochastic petri net example

- What is $P(t_3\text{ ever fires})$?
 - Under what conditions will it fire?
 - What is $P(t_3\text{ fires}|\text{token in } p_1)$?
 - What causes there to be a token in p_1?
 - What is $P(t_1\text{ fires})$?
 - How do you combine
X-Schemas

- Active representation
- Has hierarchical actions
 - defined by network structure
- Actions have structure (e.g. ready, iterating, ongoing, failed, complete)
 - defined by network structure
- Properly-designed nets will be goal-directed
 - take best actions to reach goal, given current context