CS-184: Computer Graphics

Lecture #4: 2D Transformations

Prof. James O'Brien University of California, Berkeley

V2007-F-04-1.0

Today

• 2D Transformations

- "Primitive" Operations
 - Scale, Rotate, Shear, Flip, Translate
- Homogenous Coordinates
- SVD
- Start thinking about rotations...

Introduction

• Transformation:

An operation that changes one configuration into another

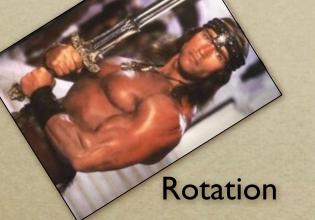
• For images, shapes, etc.

A geometric transformation maps positions that define the object to other positions

Linear transformation means the transformation is defined by a linear function... which is what matrices are good for.

Some Examples

Original

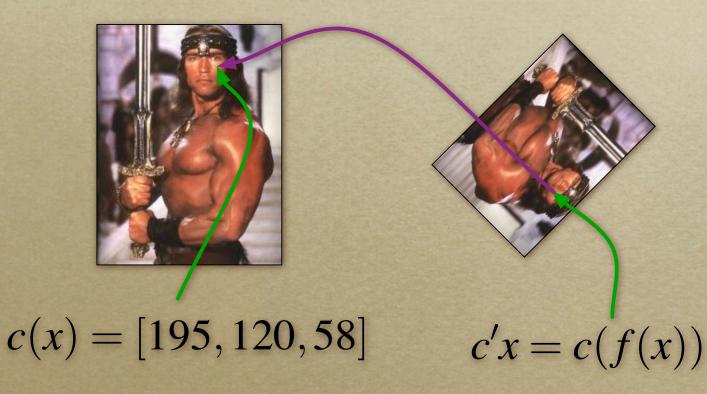


Uniform Scale

Nonuniform Scale

Images from Conan The Destroyer, 1984

f(x) = x in old image



Linear -vs- Nonlinear

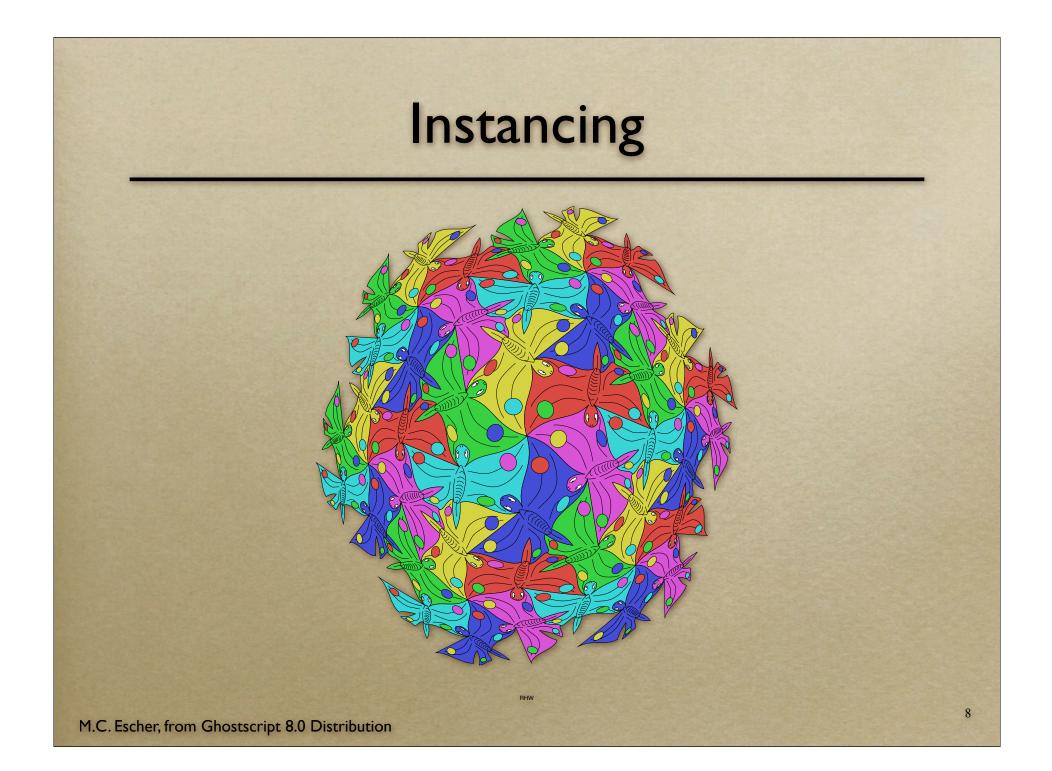
Nonlinear (swirl)

Linear (shear)

Geometric -vs- Color Space

Color Space Transform (edge finding)

Linear Geometric (flip)

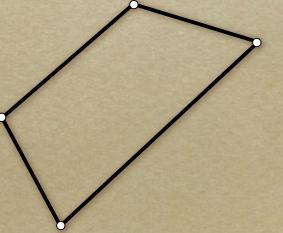


Instancing

- Reuse geometric descriptions
- Saves memory

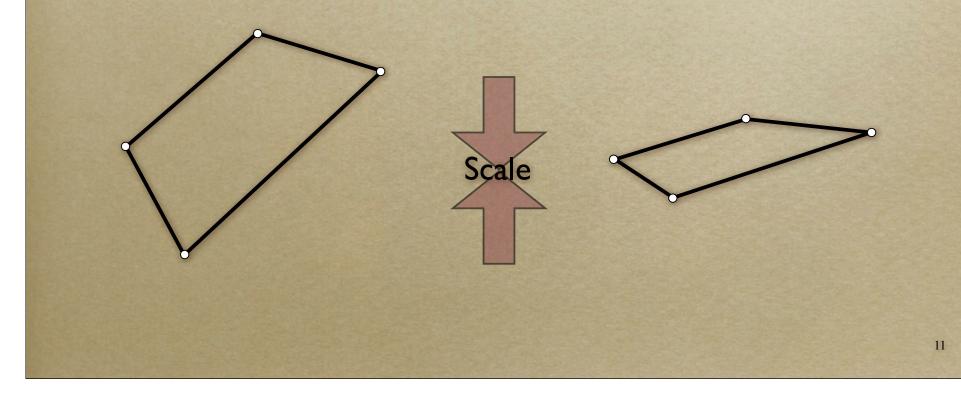
Linear is Linear

- Polygons defined by points
- Edges defined by interpolation between two points
- Interior defined by interpolation between all points
- Linear interpolation



Linear is Linear

Composing two linear function is still linear
Transform polygon by transforming vertices



Linear is Linear

Composing two linear function is still linear
Transform polygon by transforming vertices

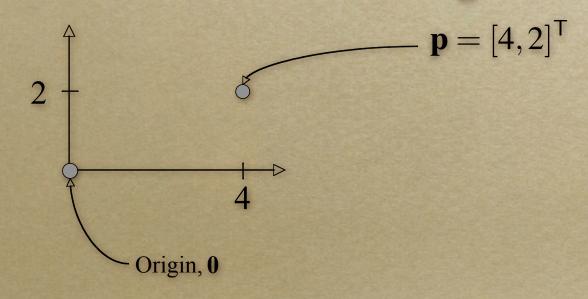
$$f(x) = a + bx$$
 $g(f) = c + df$

g(x) = c + df(x) = c + ad + bdx

$$g(x) = a' + b'x$$

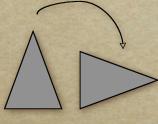
Points in Space

- Represent point in space by vector in \mathbb{R}^n
 - Relative to some origin!
 - Relative to some coordinate axes!
- Later we'll add something extra...



Basic Transformations

- Basic transforms are: rotate, scale, and translate
- Shear is a composite transformation!



Rotate

Translate

Scale

Shear -- not really "basic"

-ioninionaisonoic

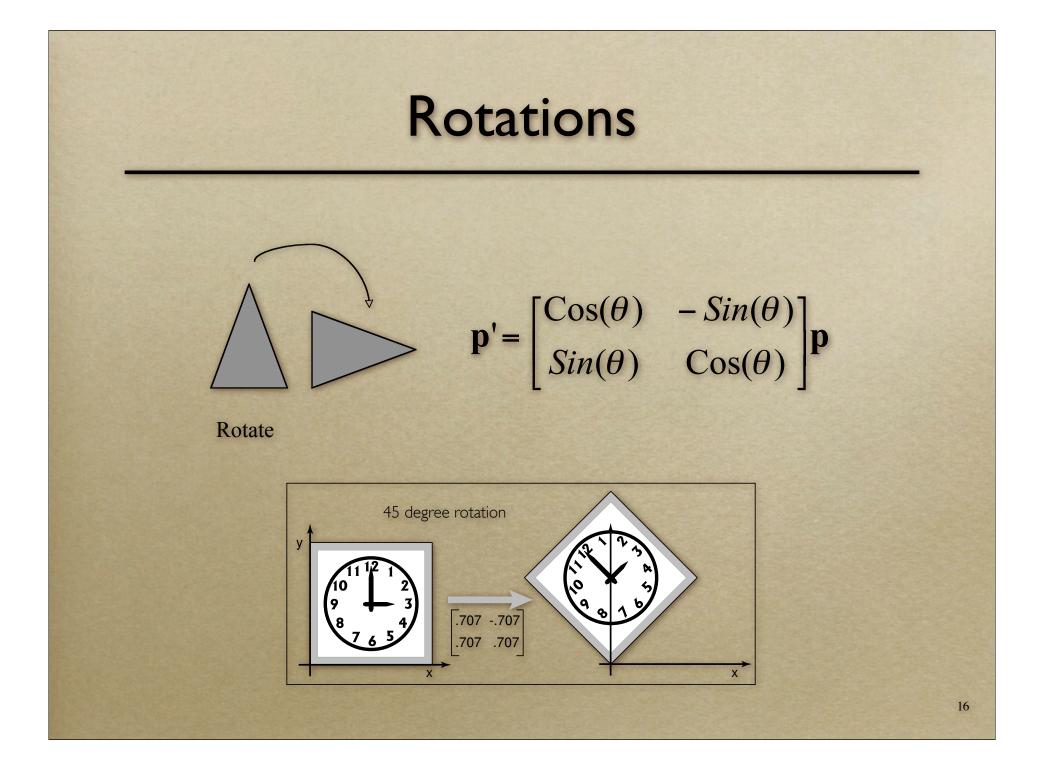
Linear Functions in 2D

$$x' = f(x, y) = c_1 + c_2 x + c_3 y$$

$$y' = f(x, y) = d_1 + d_2 x + d_3 y$$

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} t_x\\t_y \end{bmatrix} + \begin{bmatrix} M_{xx} & M_{xy}\\M_{yx} & M_{yy} \end{bmatrix} \cdot \begin{bmatrix} x\\y \end{bmatrix}$$

 $\mathbf{x}' = \mathbf{t} + \mathbf{M} \cdot \mathbf{x}$



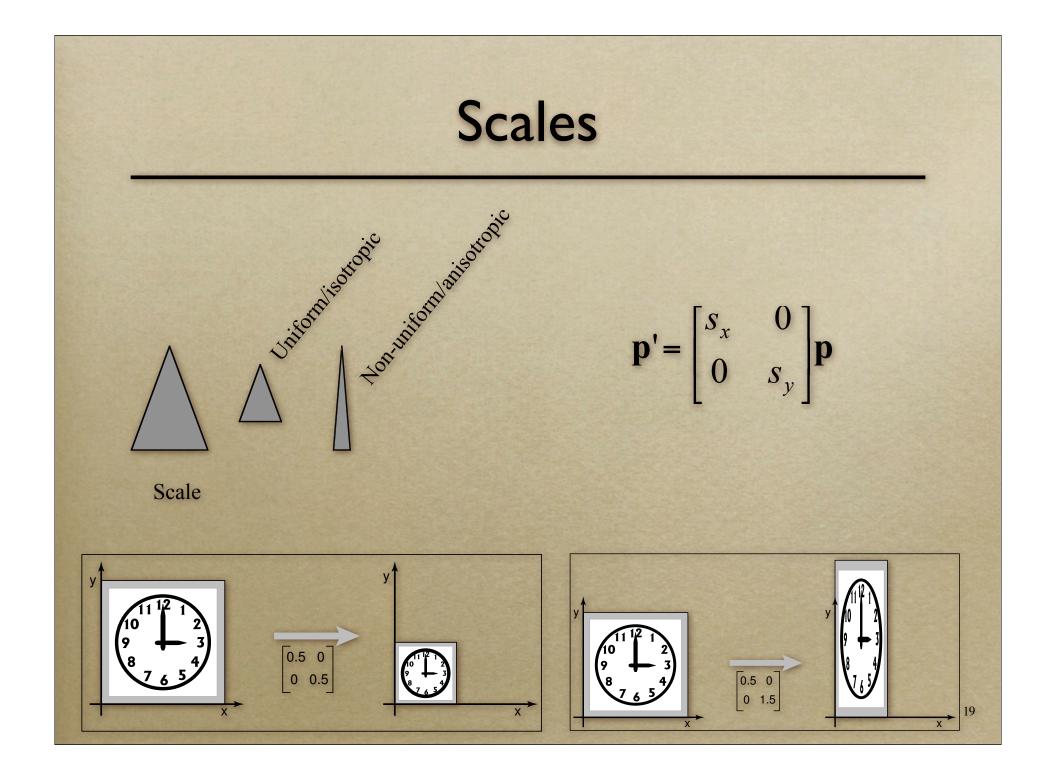
Rotations

Rotations are positive counter-clockwise
Consistent w/ right-hand rule
Don't be different...
Note:

• rotate by zero degrees give identity • rotations are modulo 360 (or 2π)

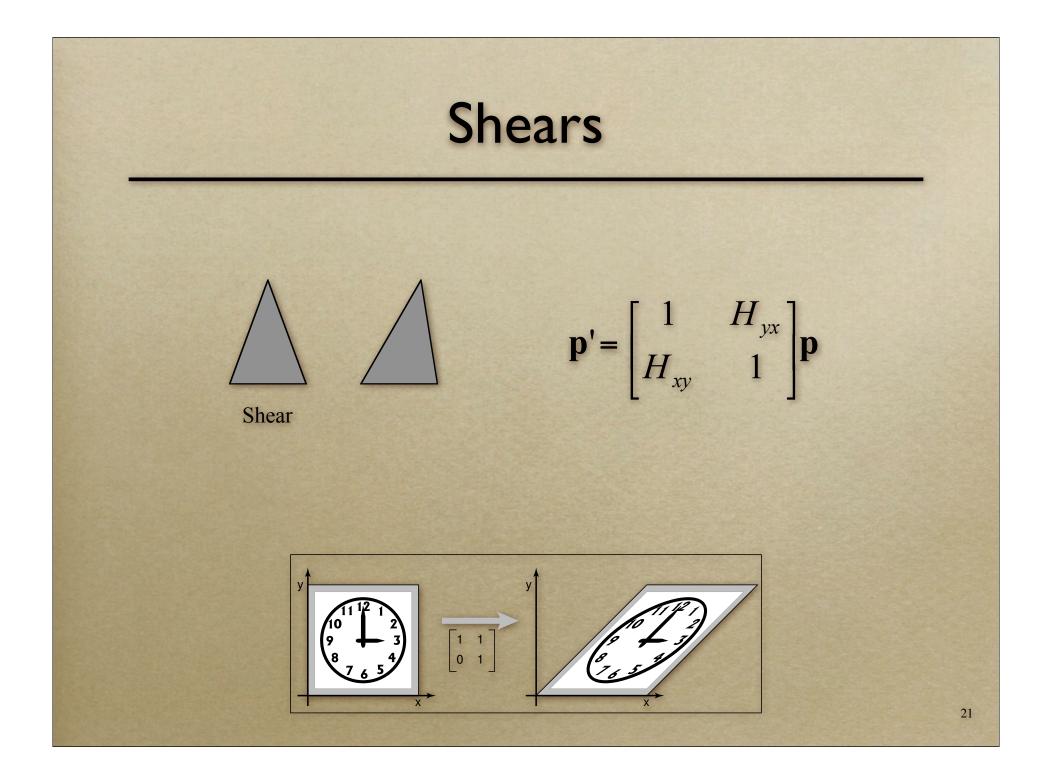
Rotations

- Preserve lengths and distance to origin
 Rotation matrices are orthonormal
 Det(**R**) = 1 ≠ −1
- In 2D rotations commute...
 - But in 3D they won't!



Scales

- Diagonal matrices
 - Diagonal parts are scale in X and scale in Y directions
 - Negative values flip
 - Two negatives make a positive (180 deg. rotation)
 - Really, axis-aligned scales



Shears

Shears are not really primitive transforms
Related to non-axis-aligned scales
More shortly....

Translation

• This is the not-so-useful way:

Translate

Note that its not like the others.

Arbitrary Matrices

 \circ For everything but translations we have: $\mathbf{x}' = \mathbf{A} \cdot \mathbf{x}$

Soon, translations will be assimilated as well

What does an arbitrary matrix mean?

Singular Value Decomposition

• For any matrix, A, we can write SVD: $A = QSR^{T}$

where Q and R are orthonormal and S is diagonal

• Can also write Polar Decomposition $A = QRSR^{T}$

not the same Q

where Q is still orthonormal

Decomposing Matrices

- We can force Q and R to have Det=1 so they are rotations
- Any matrix is now:
 - Rotation:Rotation:Scale:Rotation
 - See, shear is just a mix of rotations and scales

Composition

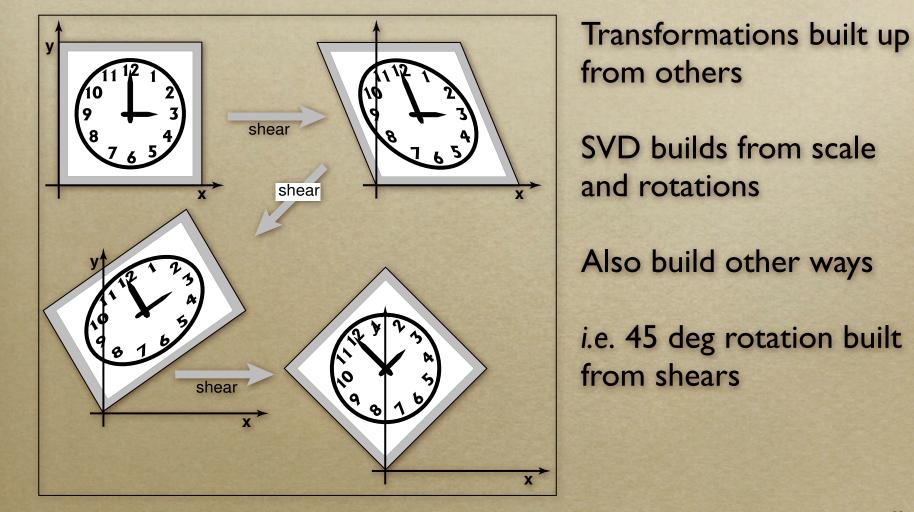
Matrix multiplication composites matrices
 p' = BAp

"Apply A to p and then apply B to that result."

$$\mathbf{p'} = \mathbf{B}(\mathbf{A}\mathbf{p}) = (\mathbf{B}\mathbf{A})\mathbf{p} = \mathbf{C}\mathbf{p}$$

Several translations composted to one
Translations still left out...
p' = B(Ap + t) = p + Bt = Cp + u

Composition



Homogeneous Coordiantes

Move to one higher dimensional space
Append a 1 at the end of the vectors

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \end{bmatrix} \qquad \widetilde{\mathbf{p}} = \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

Homogeneous Translation

$$\widetilde{\mathbf{p}}' = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

 $\widetilde{\mathbf{p}}' = \widetilde{\mathbf{A}}\widetilde{\mathbf{p}}$

The tildes are for clarity to distinguish homogenized from non-homogenized vectors.

Homogeneous Others

$$\widetilde{\mathbf{A}} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

Now everything looks the same... Hence the term "homogenized!"

Compositing Matrices

Rotations and scales always about the origin
How to rotate/scale about another point?

-VS-

Rotate About Arb. Point

• Step I: Translate point to origin

Translate (-C)

Rotate About Arb. Point

Step I: Translate point to origin
Step 2: Rotate as desired

Translate (-C)

Rotate (θ)

Rotate About Arb. Point

- Step I: Translate point to origin
- Step 2: Rotate as desired
- Step 3: Put back where it was

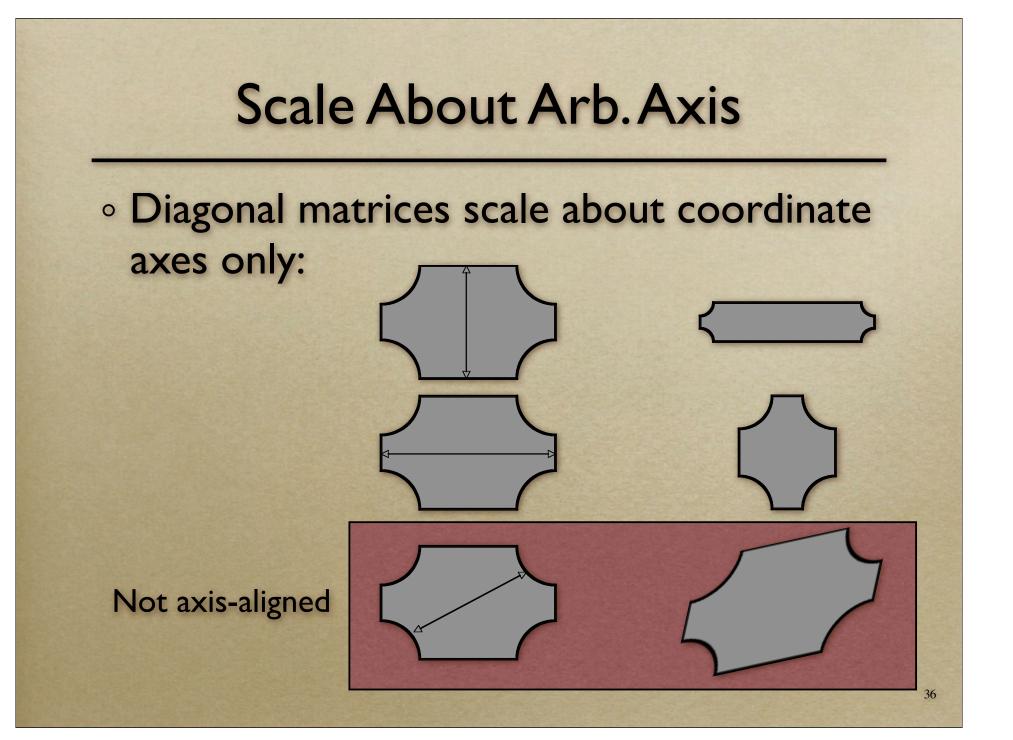
Translate (-C)

Rotate (θ)

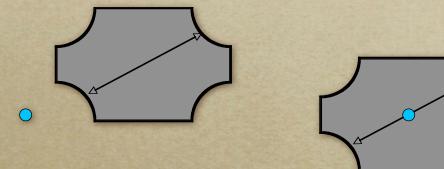
Translate (C)

35

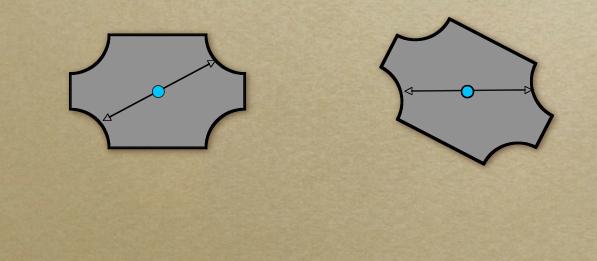
 $\widetilde{\mathbf{p}}' = (-\mathbf{T})\mathbf{R}\mathbf{T}\widetilde{\mathbf{p}} = \mathbf{A}\widetilde{\mathbf{p}}$ Don't negate the 1...



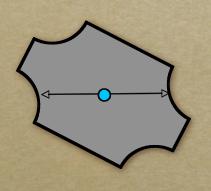
• Step I: Translate axis to origin

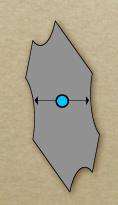


- Step I: Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes



- Step I: Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired





- Step I: Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired

0

Steps 4&5: Undo 2 and I (reverse order)

0

Order Matters!

• The order that matrices appear in matters $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B}\mathbf{A}$

- Some special cases work, but they are special
 But matrices are associative

 (A · B) · C = A · (B · C)
- Think about efficiency when you have many points to transform...

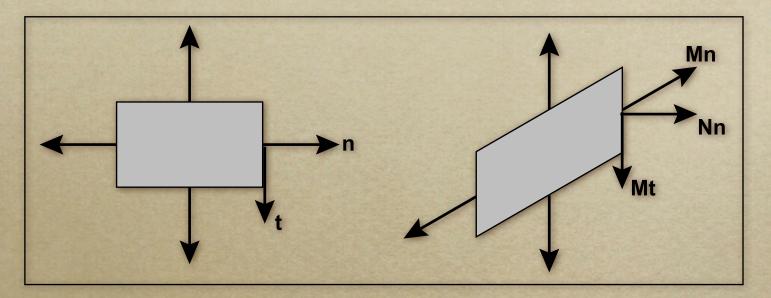
Matrix Inverses

- \circ In general: A^{-1} undoes effect of A
- Special cases:
 - Translation: negate t_x and t_y
 - Rotation: transpose
 - Scale: invert diagonal (axis-aligned scales)
- Others:
 - Invert matrix
 - Invert SVD matrices

Point Vectors / Direction Vectors

- Points in space have a 1 for the "w" coordinate
- What should we have for $\mathbf{a} \mathbf{b}$?
 - $\circ w = 0$
 - Directions not the same as positions
 - Difference of positions is a direction
 - Position + direction is a position
 - Direction + direction is a direction
 - Position + position is nonsense

Somethings Require Care



For example normals do not transform normally $\mathbf{M}(\mathbf{a}\times\mathbf{b})\neq(\mathbf{M}\mathbf{a})\times(\mathbf{M}\mathbf{b})$

$$\mathbf{M}(\mathbf{Re}) \neq \mathbf{R}(\mathbf{Me})$$