Functional Dependencies

R&G Chapter 19

Science is the knowledge of consequences, and dependence of one fact upon another.

Thomas Hobbes
(1588-1679)

Review: Database Design

- **Requirements Analysis**
 - user needs; what must database do?
- **Conceptual Design**
 - high level descr (often done w/ER model)
- **Logical Design**
 - translate ER into DBMS data model
- **Schema Refinement**
 - consistency, normalization
- **Physical Design**
 - indexes, disk layout
- **Security Design**
 - who accesses what

The Evils of Redundancy

- **Redundancy** is at the root of several problems associated with relational schemas:
 - redundant storage, insert/delete/update anomalies
 - Integrity constraints, in particular functional dependencies, can be used to identify schemas with such problems and to suggest refinements.
- Main refinement technique: **decomposition**
 - replacing ABCD with, say, AB and BCD, or AC and AD.
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

Functional Dependencies (FDs)

- A functional dependency $X \rightarrow Y$ holds over relation schema R if, for every allowable instance r of R:
 $$ t1 \in r, \ t2 \in r, \ \pi_X(t1) = \pi_X(t2) \implies \pi_Y(t1) = \pi_Y(t2) $$
 (where $t1$ and $t2$ are tuples; X and Y are sets of attributes)
- In other words: $X \rightarrow Y$ means
 - Given any two tuples in r, if the X values are the same, then the Y values must also be the same. (but not vice versa)
- Read \rightarrow as "determines"

FD’s Continued

- An FD is a statement about all allowable relations.
 - Must be identified based on semantics of application.
 - Given some instance $r1$ of R, we can check if $r1$ violates some FD f, but we cannot determine if f holds over R.
- **Question: How related to keys?**
 - if "$K \rightarrow$ all attributes of R" then K is a **superkey** for R
 (does not require K to be minimal.)
- FDs are a generalization of keys.

Example: Constraints on Entity Set

- Consider relation obtained from *Hourly_Emps*:
 - *Hourly_Emps* (ssn, name, lot, rating, wage_per_hr, hrs_per_wk)
- We sometimes denote a relation schema by listing the attributes: e.g., *SNLRWH*
- This is really the set of attributes (S,N,L,R,W,H).
- Sometimes, we refer to the set of all attributes of a relation by using the relation name. e.g., "Hourly_Emps" for SNLRWH
- What are some FDs on *Hourly_Emps*?
 - **ssn is the key:** $S \rightarrow$ SNLRWH
 - **rating determines wage_per_hr:** $R \rightarrow W$
 - **lot determines lot:** $L \rightarrow L$ ("trivial" dependency)
Problems Due to \(R \rightarrow W \)

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

- **Update anomaly:** Should we be allowed to modify W in only the 1st tuple of SNLRWH?
- **Insertion anomaly:** What if we want to insert an employee and don’t know the hourly wage for his or her rating? (or we get it wrong?)
- **Deletion anomaly:** If we delete all employees with rating 5, we lose the information about the wage for rating 5!

Detecting Redundancy

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Q: Why was \(R \rightarrow W \) problematic, but \(S \rightarrow W \) not?

Decomposing a Relation

- **Redundancy** can be removed by "chopping" the relation into pieces (vertically)!
- **FD**’s are used to drive this process.
- \(R \rightarrow W \) is causing the problems, so decompose SNLRWH into what relations?

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>123-22-3666</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>231-31-5368</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>131-24-3650</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>434-26-3751</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>612-67-4134</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Hourly_Emps2

Hourly_Emps

Refining an ER Diagram

- 1st diagram becomes:
 - Workers(S,N,L,D,S)
 - Departments(D,M,B,L)
 - Lots associated with workers.
 - Suppose all workers in a dept are assigned the same lot: \(D \rightarrow L \)
- Redundancy fixed by:
 - Workers2(S,N,D,L)
 - Dept_Lots(D,L)
- Can fine-tune this:
 - Workers2(S,N,D,S)
 - Departments(D,M,B,L)

Rules of Inference

- **Armstrong’s Axioms** \((X, Y, Z)\) are sets of attributes:
 - Reflexivity: \(X \supseteq Y \), then \(X \rightarrow Y \)
 - Augmentation: \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - Transitivity: \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)
- These are sound and complete inference rules for FDs!
 - i.e., using AA you can compute all the FDs in \(F^+ \) and only these FDs.
- Some additional rules (that follow from AA):
 - Union: \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
 - Decomposition: \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
Example

• Contracts\((cid, sid, did, pid, qty, value)\), and:
 - C is the key: \(C \rightarrow CSJDPQV\)
 - Proj purchases each part using single contract: \(JP \rightarrow C\)
 - Dept purchases at most 1 part from a supplier: \(SD \rightarrow P\)

• Problem: Prove that SDJ is a key for Contracts
 - \(JP \rightarrow C\), \(C \rightarrow CSJDPQV\) imply \(JP \rightarrow CSJDPQV\) (by transitivity) (shows that JP is a key)
 - \(SD \rightarrow P\) implies \(SDJ \rightarrow JP\) (by augmentation)
 - \(SDJ \rightarrow JP\), \(JP \rightarrow CSJDPQV\) imply \(SDJ \rightarrow CSJDPQV\) (by transitivity) thus SDJ is a key.

Q: can you now infer that \(SD \rightarrow CSDPQV\) (i.e., drop the \(J\) on both sides)?

No! FD inference is not like arithmetic multiplication.

Attribute Closure

• Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
 - Typically, we just want to check if a given \(FD X \rightarrow Y\) is in the closure of a set of FDs \(F\). An efficient check:
 - Compute attribute closure of \(X\) (denoted \(X^+\)) wrt \(F\).
 - \(X^+ = \{\text{Set of all attributes } A \text{ such that } X \rightarrow A \text{ is in } F^+\}\)
 - Repeat until no change: if there is an \(fd U \rightarrow V\) in \(F\) such that \(U\) is in \(X^+\), then add \(V\) to \(X^+\)
 - Check if \(Y\) is in \(X^+\).
 - Approach can also be used to find the keys of a relation.
 - If all attributes of \(R\) are in the closure of \(X\) then \(X\) is a superkey for \(R\).
 - Q: How to check if \(X\) is a "candidate key"?

Attribute Closure (example)

• \(R = \{A, B, C, D, E\}\)
• \(F = \{B \rightarrow CD, D \rightarrow E, B \rightarrow A, E \rightarrow C, AD \rightarrow B\}\)

• Is \(B \rightarrow E\) in \(F^+\)?
 - \(B^+ = B\)
 - \(B^+ = BCD\)
 - \(B^+ = BCDAE\) ... Yes!
 - and \(B\) is a key for \(R\) too!

• Is \(D\) a key for \(R\)?
 - \(D^+ = D\)
 - \(D^+ = DE\)
 - \(D^+ = DEC\)
 - ... Nope!

• Is \(AD\) a key for \(R\)?
 - \(AD^+ = AD\)
 - \(AD^+ = ABD\) and \(B\) is a key, so Yes!

• Is \(AD\) a candidate key for \(R\)?
 - \(A^+ = A, D^+ = DEC\)
 - ... \(A, D\) not keys, so Yes!

• Is \(ADE\) a candidate key for \(R\)?
 - ... No! \(AD\) is a key, so \(ADE\) is a superkey, but not a cand. key.

Next Class...

• Normal forms and normalization
• Table decompositions