Schema Refinement and Normalization

Nobody realizes that some people expend tremendous energy merely to be normal.
Albert Camus

Functional Dependencies (Review)
- A functional dependency $X \rightarrow Y$ holds over relation schema R if, for every allowable instance r of R:
 \[t_1 \in r, \ t_2 \in r, \ \pi_X(t_1) = \pi_X(t_2) \]
 implies \[\pi_Y(t_1) = \pi_Y(t_2) \]
 (where t_1 and t_2 are tuples; X and Y are sets of attributes)
- In other words: $X \rightarrow Y$ means
 Given any two tuples in r, if the X values are the same, then the Y values must also be the same. (but not vice versa)
- Can read "\rightarrow" as "determines"

Normal Forms
- Back to schema refinement...
- Q1: is any refinement is needed??!
- If a relation is in a normal form (BCNF, 3NF etc.):
 - we know that certain problems are avoided/minimized.
 - helps decide whether decomposing a relation is useful.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No (non-trivial) FDs hold: There is no redundancy here.
 - Given $A \rightarrow B$: If A is not a key, then several tuples could have the same A value, and if so, they’ll all have the same B value!
- 1st Normal Form – all attributes are atomic
- 1st \supset 2nd (of historical interest) \supset 3rd \supset Boyce-Codd \supset ...

Boyce-Codd Normal Form (BCNF)
- Reln R with FDs F is in BCNF if, for all $X \rightarrow A$ in F^+
 - $A \in X$ (called a trivial FD), or
 - X is a superkey for R.
- In other words: "R is in BCNF if the only non-trivial FDs over R are key constraints."
- If R in BCNF, then every field of every tuple records information that cannot be inferred using FDs alone.
 - Say we know FD $X \rightarrow A$ holds this example relation:
 - Can you guess the value of the missing attribute?
 - Yes, so relation is not in BCNF

Decomposition of a Relation Schema
- If a relation is not in a desired normal form, it can be decomposed into multiple relations that each are in that normal form.
- Suppose that relation R contains attributes $A_1 ... A_n$. A decomposition of R consists of replacing R by two or more relations such that:
 - Each new relation scheme contains a subset of the attributes of R, and
 - Every attribute of R appears as an attribute of at least one of the new relations.

Example (same as before)
- SNLRWH has FDs $S \rightarrow SNLRWH$ and $R \rightarrow W$
- Q: Is this relation in BCNF?
 - No, The second FD causes a violation; W values repeatedly associated with R values.

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>W</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

Hourly_Emps
Decomposing a Relation
- Easiest fix is to create a relation RW to store these associations, and to remove W from the main schema:

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hourly_Emps2

- Q: Are both of these relations now in BCNF?
- Decompositions should be used only when needed.
- Q: potential problems of decomposition?

Problems with Decompositions
- There are three potential problems to consider:
 1) May be impossible to reconstruct the original relation! (Lossiness)
 - Fortunately, not in the SNLW example.
 2) Dependency checking may require joins.
 - Fortunately, not in the SNLW example.
 3) Some queries become more expensive.
 - e.g., How much does Guldu earn?

Tradeoff: Must consider these issues vs. redundancy.

Lossless Decomposition (example)

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>L</th>
<th>R</th>
<th>H</th>
<th>R</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lossy Decomposition (example)

A → B; C → B

More on Lossless Decomposition
- The decomposition of R into X and Y is lossless with respect to F if and only if the closure of F contains:
 \[X \cap Y \rightarrow X \text{ or } X \cap Y \rightarrow Y \]
 in example: decomposing ABC into AB and BC is lossy, because intersection (i.e., “B”) is not a key of either resulting relation.
- Useful result: If W → Z holds over R and W ∩ Z is empty, then decomposition of R into R-Z and WZ is loss-less.
Important to consider preserving dependencies. Decomposition of R into X and Y is dependency preserving if $(F_x \cup F_y)^+ = F^+$

- i.e., if we consider only dependencies in the closure F^+ that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F^+.

Important to consider F^+ in this definition:
- ABC, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$, decomposed into AB and BC.
- Is this dependency preserving? Is $C \rightarrow A$ preserved?????
- note: F^+ contains $F \cup (A \rightarrow C, B \rightarrow A, C \rightarrow B)$, so...

- F_{ax} contains $A \rightarrow B$ and $B \rightarrow A$; F_{ax} contains $B \rightarrow C$ and $C \rightarrow B$
- So, $(F_{ax} \cup F_{ax})^+$ contains $C \rightarrow A$

Dependency Preserving Decomposition

- **Definition:** If R is decomposed into X, Y, and Z, and we enforce the FDs that hold individually on X, on Y, and on Z, then all FDs that were given to hold on R must also hold. (Avoids Problem #2 on our list.)

- **Projection of set of FDs F:** If R is decomposed into X and Y the projection of F on X (denoted F_x) is the set of FDs $U \rightarrow V$ in F^+ (closure of F, not just F) such that all of the attributes U, V are in X. (same holds for Y of course)

Decomposition into BCNF

- Consider relation R with FDs F. If $X \rightarrow Y$ violates BCNF, decompose R into $R=XY$ (guaranteed to be loss-less).
- Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
- e.g., $CSJDQV$, key C, $JP \rightarrow C$, $SD \rightarrow P$, $J \rightarrow S$
- {contractid, supplierid, projectid, deiptid, partid, qty, value}
- To deal with $SD \rightarrow P$, decompose into SDP, CSJDQV.
- To deal with $J \rightarrow S$, decompose CSJDQV into JS and CJDQV
- So we end up with: SDP, JS, and CJDQV
- Note: several dependencies may cause violation of BCNF. The order in which we deal with them could lead to very different sets of relations!

Lossless Decomposition (example)

$$\begin{array}{c|c|c}
A & B & C \\
\hline
\rightarrow B & \rightarrow B \\
\end{array}$$

$$\begin{array}{c|c|c}
A & C & B \\
\hline
\rightarrow \emptyset & \rightarrow \emptyset & \rightarrow \emptyset \\
\end{array}$$

But, now we can’t check $A \rightarrow B$ without doing a join!

Dependency Preserving Decompositions (Contd.)

- **Decomposition of R into X and Y is dependency preserving** if $(F_x \cup F_y)^+ = F^+$
- i.e., if we consider only dependencies in the closure F^+ that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F^+.

- **Important to consider F^+ in this definition:**
 - ABC, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$, decomposed into AB and BC.
 - Is this dependency preserving? Is $C \rightarrow A$ preserved?????
 - note: F^+ contains $F \cup (A \rightarrow C, B \rightarrow A, C \rightarrow B)$, so...

 - F_{ax} contains $A \rightarrow B$ and $B \rightarrow A$; F_{ax} contains $B \rightarrow C$ and $C \rightarrow B$
 - So, $(F_{ax} \cup F_{ax})^+$ contains $C \rightarrow A$

Third Normal Form (3NF)

- Reln R with FDs F is in 3NF if, for all $X \rightarrow A$ in F^+
 - $A \in X$ (called a trivial FD), or
 - X is a superkey of R, or
 - A is part of some candidate key (not superkey!) for R.
 - (sometimes stated as “A is prime”)

- **Minimality** of a key is crucial in third condition above!
 - If R is in BCNF, obviously in 3NF.
 - If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no “good” decomp, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
 - e.g., CSZ, $CS \rightarrow Z$, $Z \rightarrow C$
 - Can’t decompose while preserving 1st FD; not in BCNF.

- Similarly, decomposition of $CSJDQV$ into SDP, JS and $CJDQV$ is not dependency preserving (w.r.t. the FDs $JP \rightarrow C$, $SD \rightarrow P$ and $J \rightarrow S$).

- {contractid, supplierid, projectid, deiptid, partid, qty, value}
 - However, it is a lossless join decomposition.
 - In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - but JPC tuples are stored only for checking the f.d. (Redundancy!)
What Does 3NF Achieve?

- If 3NF violated by $X \rightarrow A$, one of the following holds:
 - X is a subset of some key K ("partial dependency")
 - We store (X, A) pairs redundantly.
 - e.g., Reserves SBD (C is for credit card) with key SBD and $S \rightarrow C$
 - X is not a proper subset of any key. ("transitive dep.")
 - There is a chain of FDs $K \rightarrow X \rightarrow A$
 - So we can't associate an X value with a K value unless we also associate an A value with an X value (different K's, same X implies same A!)
 - Problem with initial SNLRWH example.
- But: even if R is in 3NF, these problems could arise.
 - e.g., Reserves SBD (note: "C" is for credit card here), $S \rightarrow C$, $C \rightarrow S$ is in 3NF (why?), but for each reservation of sailor S, same (S, C) pair is stored.
- Thus, 3NF is indeed a compromise relative to BCNF.
 - You have to deal with the partial and transitive dependency issues in your application code!

Decomposition into 3NF

- Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier) but does not ensure dependency preservation.
- To ensure dependency preservation, one idea:
 - If $X \rightarrow Y$ is not preserved, add relation XY.
 - Problem is that XY may violate 3NF! e.g., consider the addition of CJP to "preserve" $JP \rightarrow C$. What if we also have $J \rightarrow C$?
- Refinement: Instead of the given set of FDs F, use a minimal cover for F.

Minimal Cover for a Set of FDs

- **Minimal cover** G for a set of FDs F:
 - Closure of $F = \text{closure of } G$.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
- Intuitively, every FD in G is needed, and "as small as possible" in order to get the same closure as F.
- e.g., $A \rightarrow B$, $ABCD \rightarrow E$, $EF \rightarrow GH$, $ACDF \rightarrow EG$ has the following minimal cover:
 - $A \rightarrow B$, $ACD \rightarrow E$, $EF \rightarrow G$ and $EF \rightarrow H$
- M.C. implies Lossless-Join, Dep. Pres. Decomp!!!
 - (in book)

Summary of Schema Refinement

- **BCNF**: each field contains information that cannot be inferred using only FDs.
 - ensuring BCNF is a good heuristic.
- **Not in BCNF? Try decomposing into BCNF relations.**
 - Must consider whether all FDs are preserved!
- **Lossless-join, dependency preserving decomposition into BCNF impossible? Consider 3NF.**
 - Same if BCNF decomp is unsuitable for typical queries
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.
- **Note:** even more restrictive Normal Forms exist (we don’t cover them in this course, but some are in the book.)